

CB&I Environmental & Infrastructure, Inc. 150 Royall Street Canton, Massachusetts 02021 617-589-5111 Fax: 617-589-5495

Project #: 1009634028.00821110

WWW.CBI.com

September 19, 2016

Ms. Jing Chen Connecticut Department of Energy & Environmental Protection 79 Elm Street Hartford, CT 06106

Subject: Semi-Annual Site Status Update

Middletown Generating Station

Middletown, CT

Dear Ms. Chen:

On behalf of Middletown Power LLC, CB&I Environmental & Infrastructure (CB&I) has prepared this letter to provide a semi-annual site status update for the subject site. In addition, CB&I is providing the Connecticut Department of Energy & Environmental Protection (CTDEEP) with a schedule for continuing environmental activities at the site.

AUGUST 2015 THROUGH JANUARY 2016 ACTIVITIES

Environmental field activities completed at the site between August 2015 and January 2016 include groundwater monitoring and Engineered Control (EC) installation and inspections. These activities are discussed below. Other environmental activities completed for the subject site during this reporting period include the following:

- Capping and Environmental Land Use Restriction (ELUR) issues were discussed in a meeting with the CTDEEP in October 2015. The EC will be implemented in SB-2 including the southeast portion of SB-2 (which extends onto Connecticut Department of Transportation (ConnDOT) property) once a final agreement is reached between NRG, ConnDOT, and CTDEEP. The efforts that have been made are documented in the April 11, 2016 letter submitted to CTDEEP and provided in Attachment 1. We seek CTDEEP's assistance in working with ConnDOT to close out the site, via use of an ELUR or any other "out of the box" method that meets CTDEEP's goals, as well as NRG and ConnDOT's goals.
- NRG submitted an Alternative and Additional Surface Water Protection Criteria (SWPC) and soil
 request to CTDEEP on February 2, 2016. Approval was received on February 19, 2016 from
 CTDEEP for EPH/VPH Methods (I/C DEC, GB PMC, SWPC, and I/C GWVC). Approval was also
 received for extractable total petroleum hydrocarbons (ETPH), 2-methylnaphthalene, and
 phenanthrene SWPC values. CTDEEP has not yet issued comments or approval on the
 remaining constituents of concern (COCs) including arsenic, selenium, and vanadium.

Groundwater Monitoring

CB&I conducted a groundwater sampling event on December 10 and 11, 2015. Groundwater monitoring and sampling was completed at twelve monitoring wells in December 2015. Monitoring well locations are shown on the site plans (Figures 1 and 2). A list of the monitoring wells sampled and the analyses conducted is provided in the table below. Laboratory analysis was completed by Accutest Laboratories in Marlboro, Massachusetts. The groundwater sampling event was generally consistent with the monitoring plan provided in EC Part 2 dated November 2010 and the Site-Wide Remedial Action Plan (RAP) dated October 2011.

	Laboratory Analysis December 10 and 11, 2015 Groundwater Monitoring Event							
Location	Metals	EPH with PAHs						
TW-10	X							
TW-14	X							
TW-17D	X							
TW-18	X (duplicate)							
TW-21D	X							
AOC01-MW1R	X							
AOC01-MW2	X							
AOC05-MW1		X						
AOC02-SB1-MW1	X							
AOC08-SB1-MW1		X (duplicate)						
AOC09-SB1-MW1	As only	X						
AOC09-SB2-MW2	X	X						

Notes:

- Total Metals including arsenic, lead, selenium, vanadium, and zinc by EPA Method 6010C (Lab Code: SW846 6010C).
- Extractable petroleum hydrocarbons (EPH) by Massachusetts Department of Environmental Protection (MADEP) method (Lab Code: MADEP EPH Rev. 1.1, SW846 3510C) and polycyclic aromatic hydrocarbons (PAHs) including 2-methlynapthalene by EPA Method 8270 SIM (Lab Code: SW846 8270D by SIM).

During the December 2015 groundwater sampling event, depth to groundwater was measured at each of the monitoring wells using an electronic interface probe (IP) capable of detecting light non-aqueous phase liquid (LNAPL). LNAPL was not detected in monitoring wells gauged during this event. Results of water level monitoring can be found in **Table 1**.

During the December 2015 groundwater monitoring event, CB&I collected groundwater samples from the monitoring wells listed in the above table using a modified low flow sampling technique. No samples were field filtered. Each well was pumped at a rate that produced little drawdown while parameters including temperature, pH, dissolved oxygen, turbidity, and conductivity were monitored. Groundwater samples were then collected after the parameters stabilized to ensure that the groundwater sample was representative of local aquifer conditions. Data sheets documenting field water quality parameter stabilization are provided in Attachment 2. Laboratory analysis of each sample is noted in the table above. The complete laboratory analytical report is provided in **Attachment 3.**

The groundwater analytical results from the December 2015 sampling event are summarized in **Table 2**. The groundwater analytical results for the four most recent sampling events, including December 2015, are summarized in Table 3. These tables compare the results to applicable criteria for this site, which is classified as groundwater GB. The results of the December 2015 event are generally consistent with the previous several events except for a slightly higher concentration of arsenic and lower concentration of zinc in the groundwater sample collected from well AOC09-SB2-MW2. The plumes continue to be stable. Compounds detected in groundwater samples collected in December 2015 at concentrations greater than their respective SWPC include the following:

- C11-C22 Aromatics was detected in the groundwater sample and in the field duplicate collected from AOC08-SB1-MW1 at 256 µg/L and 205 µg/L, respectively, which are greater than the SWPC of 100 µg/L.
 - 0 Per the Engineered Control, a small low permeability cap was installed around this well to address Total Petroleum Hydrocarbons (TPH) exceeding Pollutant Mobility Criteria (PMC) in soil. Concentrations of Extractable Total Petroleum Hydrocarbons (ETPH) and Extractable Petroleum Hydrocarbons (EPH) in groundwater samples collected from this well, AOC08-SB1-MW1, are in steady state (see attached trend graphs, **Attachment 4**). Also provided in **Attachment 4** are the trend graphs for groundwater in the two wells further downgradient (AOC09-SB2-MW2 and AOC09-SB1-MW1) showing recent compliance.
- Arsenic was detected in the groundwater sample collected from AOC09-SB2-MW2 at 15 µg/L which is greater than the SWPC of 4 µg/L. As noted above, NRG recently submitted for approval an Alternative SWPC for arsenic of 520 µg/L which is still pending.
- Selenium was detected in the groundwater sample collected from TW-17D at 50.3 µg/L which is greater than the SWPC of 50 µg/L. As noted above, NRG recently submitted for approval an Alternative SWPC for arsenic of 10,000 µg/L which is still pending.
- Vanadium was detected in seven (7) of the 10 groundwater samples collected. The maximum concentration of 298 µg/L was detected in the sample collected from TW-17D. There is no established SWPC for vanadium. As noted above, NRG recently submitted for approval an Additional SWPC for vanadium of 10,000 µg/L which is still pending.

Laboratory analysis completed as part of these site activities was requested to be conducted in accordance with CTDEEP's Reasonable Confidence Protocol (RCP). The work completed during this reporting period was performed in general accordance with the site specific Quality Assurance Project Plan (QAPP). CB&I performed a data validation review for the laboratory report. The data validation work sheet is attached to the laboratory report included in **Attachment 3**. The laboratory analysis was completed in accordance with CTDEEP's RCP; however, a few minor quality assurance/quality control

Page 3

(QA/QC) issues, which are summarized in the validation worksheets and laboratory report narratives, were identified. QA/QC issues noted included:

MC43503

- A trace amount of zinc was detected in the equipment blank. Per validation protocol, the blank concentration is multiplied by 5 to get the action level for qualifying monitoring well sample concentrations. Monitoring well samples with positive results for zinc less than the action level (i.e., 5 times the amount found in the blank) were qualified with a "U" and those greater than the action level were not qualified. The data was useable.
- Trace amounts of naphthalene were detected in the equipment blank and in the OP45788-MB method blank. Per validation protocol, the blank concentration is multiplied by 5 to get the action level for qualifying monitoring well sample concentrations. Associated monitoring well samples with positive results for naphthalene less than the action level (i.e., 5 times the amount found in the blanks) were qualified with a "U" and those greater than the action level were not qualified. The data was useable.
- The relative percent differences (RPDs) for the serial dilution for lead are outside control limits for sample MP25623-SD1. The percent difference is acceptable due to low initial sample concentration (< 50 times instrument detection limit (IDL)). No qualifications are necessary.

A number of sample results for metals were reported at concentrations less than the reporting limit but greater than the method detection limit. Although this is not specifically a QA/QC issue, the results should be considered estimated and are qualified with a "J" unless "U" qualified due to blank contamination. In summary, the qualifications applied to the results had no overall effect on the conclusions drawn from the data, and the data, as qualified, is acceptable for the purpose of this submittal.

Construction of Site-Wide EC

Construction of the site-wide EC was conducted by H. E. Butler Construction Company (Butler) between August and September 2015. The work conducted during this reporting period included light re-grading of the EB-2 area and the area between EB-2 and SB-1. It also included topsoil placement and hydroseeding between EB-2 and SB-1 which was completed on September 17, 2015. Sufficient grass was established per the specification in fall of 2015 as identified in NRG's email dated November, 24, 2016. Stone EC and slope protection was placed on approximately 350 linear feet of slope north of the EB-2 area. Progress as-built drawings are provided in **Attachment 5.** NRG performed oversight of the contractor during construction.

The EC completed during this reporting period generally meets specifications approved in the October 2011 RAP. The final review has not yet been completed by the site LEP and Professional Engineer.

EC construction on SB-2 continues to be delayed in order to finalize the details of the access agreement with ConnDOT relative to RSR regulatory requirements. EC completion will be documented in a subsequent combined status report and EC Completion Report.

p:\nra\middletown\final 16\reports\status\midt status aug15 to ian16\midt stat report aug15 to ian16 rev1.docx

EC Inspections

As stated in Section 6.0 of the CTDEEP-approved EC, routine inspections of the EC installed to date begin one month after completion and are performed quarterly for the first year. After the first year, the inspection frequency can be reduced to a semi-annual schedule should the site condition be suitably stable. NRG and CB&I have conducted and completed the above noted required periodic inspections of SB-1 and several areas of stone and pavement cover. These areas are now subject to semi-annual routine inspections. Additional areas of the EC will be inspected as they are completed. As of October 2015, the areas completed during this reporting period are subject to the quarterly 'first year' routine inspections. During this reporting period, NRG conducted a routine EC inspection on November 10, 2015. A modified version of Table 1 of the EC Part 2, the Engineered Control Inspection Checklist, was completed to document the inspections (Attachment 6). Andrew Walker, Licensed Site Professional (LSP), and Paul Farrington Connecticut Professional Engineer (CT PE), both of CB&I, visited the site on September 15, 2015 to test and verify thickness of topsoil in the area between SB-1 and the fence at the water treatment plant. Thickness of topsoil in place was generally satisfactory with minor modifications required.

SITE SCHEDULE

Outlined below is an estimated site schedule that Middletown Power LLC expects to follow in the next two years.

Activity	Anticipated Date
Continued Groundwater Monitoring	Q3 2016, Q1 2017
RAP Complete (i.e., SB-2 cap construction complete)	Q4 2017
RAP Completion Report (includes Engineered Control Completion Report)	Q1 2018
Post Remediation Monitoring	On-going

NRG will continue to provide updates on the status of response actions at the subject site on a semiannual basis as requested by CTDEEP. Plans, submittals, and reports will be copied to the USEPA. If you have any questions regarding this letter or any other matter, please do not hesitate to call.

Sincerely,

Andrew D. Walker, LEP, LSP

Project Manager

CB&I Environmental & Infrastructure, Inc.

Phone: 617-589-6143

Email Address: Andrew.Walker@CBI.com

Enclosures:

Table 1 - Groundwater Gauging Data

Table 2 – Groundwater Analytical Results – Detections December 2015

Table 3 – Groundwater Analytical Results – May 2014 to December 2015

Figure 1 – Site Plan – Western

Figure 2 – Site Plan – Eastern

Attachment 1 – Letter to CTDEEP (April 11, 2016)

Attachment 2 – Field Water Quality Parameter Data Sheets

Attachment 3 – Laboratory Analytical Report and Data Validation

Attachment 4 – Groundwater Concentration versus Time Trend Graphs

Attachment 5 – Progress As-Built Drawings C-3 and C-4 (revised December 2015)

Attachment 6 - Engineered Control Inspection Checklist

cc: Keith Shortsleeve, Middletown Power LLC (hard copy and electronic copy)

Robert Spooner, NRG (electronic copy) Juan Perez, USEPA (electronic copy)

Ms. Jing Chen September 19, 2016

p:\nrg\middletown\final 16\reports\status\midt status aug15 to jan16\midt stat report_aug15 to jan16_rev1.docx

TABLE 1 GROUNDWATER GAUGING DATA (08/01/2015 - 01/31/2016)

Middletown Power LLC 1866 River Road Middletown, Connecticut

Location	Date	Reference Elevation (Feet)	Depth to Water (Feet)	Depth to LNAPL (Feet)	LNAPL Thickness (Feet)	Groundwater Elevation (Feet)	Notes
AOC01-MW1R	12/10/2015	33.48	31.05	ND		2.43	DTB = 39.45'
AOC01-MW2	12/10/2015	33.70	31.80	ND		1.90	DTB = 39.90'
AOC02-SB1-MW1	12/10/2015	27.26	24.83	ND		2.43	DTB = 35.75'
AOC05-MW1	12/10/2015	20.61	15.86	ND		4.75	DTB = 24.30'
AOC08-SB1-MW1	12/11/2015	24.78	20.08	ND		4.70	DTB = 32.03'
AOC09-SB1-MW1	12/11/2015	27.07	24.76	ND		2.31	DTB = 34.62'
AOC09-SB2-MW2	12/11/2015	24.21	22.12	ND		2.09	DTB = 34.50'
TW-10*	12/10/2015	32.58	26.25	ND		6.33	DTB = 44.45'; data not useable
TW-14*	12/10/2015	28.25	29.32	ND		-1.07	DTB = 42.71'; data not useable
TW-17D	12/10/2015	34.17	31.41	ND		2.76	DTB = 39.78'
TW-18	12/10/2015	36.46	34.09	ND		2.37	DTB = 41.15'
TW-21D	12/10/2015	34.19	31.26	ND		2.93	DTB = 41.10'

Notes: NA = Not Available

--- = Not Applicable
ND = Not Detected
DTB = Depth to Bottom
Elevations relative to NGVD29

*TW-10 and TW-14 12/10/2015 measurements considered not useable.

Groundwater Analytical Results - Detections December 2015

Middletown Power LLC, Middletown, CT

		AOC01-MW1R	AOC01-MW2	AOC02-SB1-MW1	AOC05-MW1	AOC08-SB1-MW1	AOC08-SB1-MW1	AOC09-SB1-MW1	AOC09-SB2-MW2	TW-10
		12/10/2015	12/10/2015	12/10/2015	12/10/2015	12/11/2015	12/11/2015	12/11/2015	12/11/2015	12/10/2015
CONSTITUENT	SWPC	Primary	Primary	Primary	Primary	Primary	Duplicate 1	Primary	Primary	Primary
SVOCs (ug/L)										
Acenaphthene	NE				< 0.014	1.6	1.4	<0.014	0.16JJ	
Acenaphthylene	0.3				< 0.016	0.27	0.23	<0.016	<0.016	
Anthracene	1100000				<0.018	<0.018	< 0.018	<0.018	0.043JJ	
Fluoranthene	3700				< 0.014	0.029JJ	< 0.014	<0.014	0.036JJ	
Fluorene	140000				<0.028	3.2	3.4	<0.028	0.082JJ	
Phenanthrene	14				<0.020	1.2	1.5	<0.020	<0.020	
Pyrene	110000				< 0.016	0.078JJ	0.057JJ	<0.016	0.033JJ	
EPH (ug/L)										
C9-C18 Aliphatics (FID)	770				<66	80.7JJ	69.1JJ	<66	<66	
C11-C22 Aromatics	100				<66	{256}	{205}	<66	<66	
Metals (ug/L)										
Arsenic	4	<1.7	1.7BJ	<1.7				1.7BJ	{15.0}	<1.7
Selenium	50	8.0BJ	<2.0	<2.0					<2.0	<2.0
Vanadium	NE	1.3BJ	<0.51	<0.51					<0.51	5.0BJ
Zinc	123	<3.8BU	<1.1BU	<1.6BU					15.8BJ	<5.5BU

Notes:

SWPC = Connecticut Surface Water Protection Criteria and site specific alternative and additional criteria where applicable.

SWPC for aliphatic and aromatic hydrocarbon ranges from February 2016 CTDEEP Request for Approval

for Use of EPH/VPH/APH Methods and Associated Criteria.

The SWPC for acenaphthene is 150 ug/L per CTDEEP standard form FASTAPS dated 12/10/2015.

--- = Constituent not analyzed for

NE = Not establisehd

ug/L = micrograms per liter

{Highlighed} exceeds SWPC criteria

J = Estimated value, lab and/or validation qualifier

U = Below detection limit as deteremined by validator

B = Estimated value, lab qualifier (inorganics).

Groundwater Analytical Results - Detections December 2015

Middletown Power LLC, Middletown, CT

		TW-14	TW-17D	TW-18	TW-18	TW-21D
		12/10/2015	12/10/2015	12/10/2015	12/10/2015	12/10/2015
CONSTITUENT	SWPC	Primary	Primary	Primary	Duplicate 1	Primary
SVOCs (ug/L)						
Acenaphthene	NE					
Acenaphthylene	0.3					
Anthracene	1100000					
Fluoranthene	3700					
Fluorene	140000					
Phenanthrene	14					
Pyrene	110000					
EPH (ug/L)						
C9-C18 Aliphatics (FID)	770					
C11-C22 Aromatics	100					
Metals (ug/L)						
Arsenic	4	<1.7	<1.7	<1.7	<1.7	<1.7
Selenium	50	<2.0	{50.3}	<2.0	<2.0	35.9
Vanadium	NE	2.2BJ	298	11	11.1	6.8BJ
Zinc	123	<2.4BU	<3.6BU	<1.8BU	<1.6BU	<3.0BU

Notes:

SWPC = Connecticut Surface Water Protection Criteria and site specific alternative and additional criteria where applicable.

SWPC for aliphatic and aromatic hydrocarbon ranges from February 2016 CTDEEP Request for Approval for Use of EPH/VPH/APH Methods and Associated Criteria.

The SWPC for acenaphthene is 150 ug/L per CTDEEP standard form FASTAPS dated 12/10/2015.

--- = Constituent not analyzed for

NE = Not establisehd

ug/L = micrograms per liter

{Highlighed} exceeds SWPC criteria

J = Estimated value, lab and/or validation qualifier

U = Below detection limit as deteremined by validator

B = Estimated value, lab qualifier (inorganics).

Groundwater Analytical Results - May 2014 through December 2015

Middletown Power LLC, Middletown, CT

		AOC01-MW1R	AOC01-MW1R	AOC01-MW1R	AOC01-MW1R	AOC01-MW2	AOC01-MW2	AOC01-MW2	AOC01-MW2	AOC02-SB1-MW1
		5/6/2014	9/19/2014	5/20/2015	12/10/2015	5/6/2014	9/19/2014	5/20/2015	12/10/2015	5/5/2014
CONSTITUENT	SWPC	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
SVOCs (ug/L)										
2-Methylnaphthalene	62									
Acenaphthene	NE									
Acenaphthylene	0.3									
Anthracene	1100000									
Benzo(a)anthracene	0.3									
Benzo(a)pyrene	0.3									
Benzo(b)fluoranthene	0.3									
Benzo(ghi)perylene	NE									
Benzo(k)fluoranthene	0.3									
Chrysene	NE									
Dibenzo(a,h)anthracene	NE									
Fluoranthene	3700									
Fluorene	140000									
Indeno(1,2,3-cd)pyrene	NE									
Naphthalene	NE									
Phenanthrene	14									
Pyrene	110000									
EPH (ug/L)										
C9-C18 Aliphatics (FID)	770									
C19-C36 Aliphatics (FID)	530									
C11-C22 Aromatics	100									
Metals (ug/L)										
Arsenic	4	<2.9	<2.4	<1.7	<1.7	<2.9	<2.4	<1.7	1.7BJ	<2.9
Lead	13	<1.7	<1.9	<1.7	<1.7	<1.7	<1.9	<1.7	<1.7	<1.7
Selenium	50	27	{52.6}	29.3	8.0BJ	<4.8	<2.7	<2.0	<2.0	<4.8
Vanadium	NE	<2.8	6.1BJ	<0.51	1.3BJ	<2.8	2.1BJ	1.2BJ	<0.51	<2.8
Zinc	123	<5.3BU	6.5BJ	<6.5BU	<3.8BU	65.1	7.0BJ	<8.2B	<1.1B	<6.8BU

Notes:

SWPC = Connecticut Surface Water Protection Criteria and site specific alternative and additional criteria where applicable.

SWPC for aliphatic and aromatic hydrocarbon ranges from February 2016 CTDEEP Request for Approval

for Use of EPH/VPH/APH Methods and Associated Criteria.

--- = Constituent not analyzed for.

NE = Not established

ug/L = micrograms per liter

{Highlighted} exceeds SWPC criteria

B = Estimated value (inorganics) or constituent detected in associated method blank (organics), lab qualifier

J = Estimated value, lab and/or validation qualifier

Table 3 Groundwater Analytical Results - May 2014 through December 2015

Middletown Power LLC, Middletown, CT

		AOC02-SB1-MW1 9/19/2014	AOC02-SB1-MW1 5/21/2015	AOC02-SB1-MW1 12/10/2015	AOC05-MW1 5/5/2014	AOC05-MW1 9/18/2014	AOC05-MW1 5/20/2015	AOC05-MW1 12/10/2015	AOC08-SB1-MW1 5/6/2014
CONSTITUENT	SWPC	9/19/2014 Primary	9/21/2015 Primary	12/10/2015 Primary	9/3/2014 Primary	9/18/2014 Primary	Primary	Primary	Primary
SVOCs (ug/L)			,				,		
2-Methylnaphthalene	62				<0.075	1.4	<0.011	<0.021	<0.075
Acenaphthene	NE				<0.070	<0.14	<0.0076	<0.014	0.1
Acenaphthylene	0.3				<0.050	<0.099	<0.0085	<0.016	<0.050
Anthracene	1100000				<0.093	<0.18	<0.0099	<0.018	<0.093
Benzo(a)anthracene	0.3				<0.020	<0.039	<0.024	<0.044	<0.020
Benzo(a)pyrene	0.3				<0.029	<0.057	<0.015	<0.029	<0.029
Benzo(b)fluoranthene	0.3				<0.032	< 0.063	<0.019	<0.036	<0.032
Benzo(ghi)perylene	NE				<0.027	<0.054	<0.013	<0.023	<0.027
Benzo(k)fluoranthene	0.3				<0.039	<0.077	<0.010	<0.019	< 0.039
Chrysene	NE				<0.024	<0.048	<0.013	<0.025	<0.024
Dibenzo(a,h)anthracene	NE				<0.032	<0.064	<0.015	<0.028	<0.032
Fluoranthene	3700				<0.041	<0.081	<0.0075	<0.014	<0.041
Fluorene	140000				<0.10	<0.20	< 0.015	<0.028	<0.10
Indeno(1,2,3-cd)pyrene	NE				< 0.031	< 0.061	<0.021	<0.038	<0.031
Naphthalene	NE				<0.042	<1.4B	<0.0082	<0.14JB	<0.042
Phenanthrene	14				< 0.013	<0.23	<0.011	<0.020	<0.013
Pyrene	110000				< 0.039	< 0.077	<0.0086	< 0.016	<0.039
EPH (ug/L)									
C9-C18 Aliphatics (FID)	770				<100	<100	<70J	<66	<100
C19-C36 Aliphatics (FID)	530				<100	<100	<70	<66	109
C11-C22 Aromatics	100				<100	<100	<70	<66	{287}
Metals (ug/L)									
Arsenic	4	<2.4	<1.7	<1.7					
Lead	13	<1.9	<1.7	<1.7					
Selenium	50	<2.7	<2.0	<2.0					
Vanadium	NE	0.90BJ	0.90BJ	<0.51					
Zinc	123	8.3BJ	<9.5BU	<1.6BU					

Notes:

SWPC = Connecticut Surface Water Protection Criteria and site specific alternative and additional criteria where applicable.

SWPC for aliphatic and aromatic hydrocarbon ranges from February 2016 CTDEEP Request for Approval

for Use of EPH/VPH/APH Methods and Associated Criteria.

--- = Constituent not analyzed for.

NE = Not established

ug/L = micrograms per liter

{Highlighted} exceeds SWPC criteria

B = Estimated value (inorganics) or constituent detected in associated method blank (organics), lab qualifier

J = Estimated value, lab and/or validation qualifier

Table 3 Groundwater Analytical Results - May 2014 through December 2015

Middletown Power LLC, Middletown, CT

		AOC08-SB1-MW1	AOC09-SB1-MW1						
		5/6/2014	9/18/2014	9/18/2014	5/21/2015	5/21/2015	12/11/2015	12/11/2015	5/5/2014
CONSTITUENT	SWPC	Duplicate 1	Primary						
SVOCs (ug/L)									
2-Methylnaphthalene	62		<0.25	<0.25	<0.011	<0.011	<0.021	<0.021	<0.075
Acenaphthene	NE	<0.14	1.2	1.2	0.44	0.5	1.6	1.4	<0.070
Acenaphthylene	0.3	<0.10	0.22	0.23	0.037JJ	0.064JJ	0.27	0.23	<0.050
Anthracene	1100000	<0.19	<0.18	<0.18	<0.0098	0.042JJ	<0.018	<0.018	<0.093
Benzo(a)anthracene	0.3	<0.040	<0.039	<0.039	<0.024	<0.024	<0.045	<0.044	<0.020
Benzo(a)pyrene	0.3	<0.059	<0.057	<0.057	<0.015	<0.015	<0.029	<0.029	<0.029
Benzo(b)fluoranthene	0.3	<0.064	<0.063	< 0.063	<0.019	< 0.019	<0.036	<0.036	<0.032
Benzo(ghi)perylene	NE	<0.055	<0.054	< 0.054	<0.013	< 0.013	<0.024	<0.023	<0.027
Benzo(k)fluoranthene	0.3	<0.079	<0.077	<0.077	<0.010	<0.010	<0.019	<0.019	<0.039
Chrysene	NE	<0.049	<0.048	<0.048	<0.013	<0.013	<0.025	<0.025	<0.024
Dibenzo(a,h)anthracene	NE	<0.065	<0.064	<0.064	<0.015	<0.015	<0.028	<0.028	<0.032
Fluoranthene	3700	<0.083	<0.081	<0.081	<0.0074	< 0.0074	0.029JJ	<0.014	<0.041
Fluorene	140000	<0.20	2.1	2	0.6	0.87	3.2	3.4	<0.10
Indeno(1,2,3-cd)pyrene	NE	<0.062	<0.061	<0.061	<0.020	<0.020	<0.038	<0.038	<0.031
Naphthalene	NE	<0.23B	<1.6	<1.2B	<0.0081	<0.0081	<0.42JB	<0.30JB	<0.042
Phenanthrene	14	<0.033JB	0.91	0.88	<0.011	0.089	1.2	1.5	<0.013
Pyrene	110000	<0.078	0.093JJ	0.099JJ	0.024JJ	0.042JJ	0.078JJ	0.057JJ	<0.039
EPH (ug/L)									
C9-C18 Aliphatics (FID)	770	143	202J	251	<70J	<70J	80.7JJ	69.1JJ	<100
C19-C36 Aliphatics (FID)	530	134	209J	197	<70	<70	<66	<66	<100
C11-C22 Aromatics	100	{461}	{282}J	{313}	{154}	{196}	{256}	{205}	<100
Metals (ug/L)									
Arsenic	4								<2.9
Lead	13								
Selenium	50								
Vanadium	NE								
Zinc	123								

Notes:

SWPC = Connecticut Surface Water Protection Criteria and site specific alternative and additional criteria where applicable.

SWPC for aliphatic and aromatic hydrocarbon ranges from February 2016 CTDEEP Request for Approval for Use of EPH/VPH/APH Methods and Associated Criteria.

--- = Constituent not analyzed for.

NE = Not established

ug/L = micrograms per liter

{Highlighted} exceeds SWPC criteria

B = Estimated value (inorganics) or constituent detected in associated method blank (organics), lab qualifier

J = Estimated value, lab and/or validation qualifier

Table 3 Groundwater Analytical Results - May 2014 through December 2015

Middletown Power LLC, Middletown, CT

		AOC09-SB1-MW1	AOC09-SB1-MW1	AOC09-SB1-MW1	AOC09-SB2-MW2	AOC09-SB2-MW2	AOC09-SB2-MW2	AOC09-SB2-MW2	AOC09-SB2-MW2
		9/18/2014	5/21/2015	12/11/2015	5/5/2014	5/5/2014	9/18/2014	5/21/2015	12/11/2015
CONSTITUENT	SWPC	Primary	Primary	Primary	Primary	Duplicate 1	Primary	Primary	Primary
SVOCs (ug/L)									
2-Methylnaphthalene	62	1	<0.011	<0.021	<0.075	<0.075	0.53	<0.011	<0.021
Acenaphthene	NE	<0.14	<0.0075	<0.014	0.096JJ	0.12	<0.14	0.21	0.16JJ
Acenaphthylene	0.3	<0.099	<0.0084	<0.016	<0.050	<0.050	<0.099	0.022JJ	<0.016
Anthracene	1100000	<0.18	<0.0098	<0.018	<0.093	<0.093	<0.18	<0.0098	0.043JJ
Benzo(a)anthracene	0.3	< 0.039	<0.024	<0.044	<0.020	<0.020	<0.039	<0.024	<0.044
Benzo(a)pyrene	0.3	<0.057	<0.015	<0.029	<0.029	<0.029	<0.057	<0.015	<0.029
Benzo(b)fluoranthene	0.3	< 0.063	<0.019	<0.036	<0.032	<0.032	<0.063	<0.019	<0.036
Benzo(ghi)perylene	NE	<0.054	<0.013	<0.023	<0.027	<0.027	<0.054	<0.013	<0.023
Benzo(k)fluoranthene	0.3	<0.077	<0.010	<0.019	<0.039	<0.039	<0.077	<0.010	<0.019
Chrysene	NE	<0.048	<0.013	<0.025	<0.024	<0.024	<0.048	<0.013	<0.025
Dibenzo(a,h)anthracene	NE	<0.064	<0.015	<0.028	<0.032	<0.032	<0.064	<0.015	<0.028
Fluoranthene	3700	<0.081	<0.0074	<0.014	<0.041	<0.041	<0.081	0.015JJ	0.036JJ
Fluorene	140000	<0.20	<0.015	<0.028	0.16	0.22	<0.20	0.16	0.082JJ
Indeno(1,2,3-cd)pyrene	NE	<0.061	<0.020	<0.038	<0.031	<0.031	<0.061	<0.020	<0.038
Naphthalene	NE	<1.5	<0.0081	<0.13JB	<0.057J	<0.054J	<1.0B	<0.0081	<0.14JB
Phenanthrene	14	<0.089J	<0.011	<0.020	<0.019JB	<0.013	<0.062J	<0.011	<0.020
Pyrene	110000	<0.077	<0.0085	<0.016	< 0.039	< 0.039	<0.077	<0.0085	0.033JJ
EPH (ug/L)									
C9-C18 Aliphatics (FID)	770	<100	<70J	<66	<100		<100J	<70J	<66
C19-C36 Aliphatics (FID)	530	<100	<70	<66	<100		<100J	<70	<66
C11-C22 Aromatics	100	<100	<70	<66	{150}		<100J	{137}	<66
Metals (ug/L)									
Arsenic	4	<2.4	<1.7	1.7BJ	<2.9		3.5BJ	{7.6}	{15.0}
Lead	13				<1.7		<1.9	<1.7	<1.7
Selenium	50				<4.8		<2.7	<2.0	<2.0
Vanadium	NE				<2.8		<0.72	<0.51	<0.51
Zinc	123				81.4		91.1	69.6	15.8B

Notes:

SWPC = Connecticut Surface Water Protection Criteria and site specific alternative and additional criteria where applicable.

SWPC for aliphatic and aromatic hydrocarbon ranges from February 2016 CTDEEP Request for Approval for Use of EPH/VPH/APH Methods and Associated Criteria.

--- = Constituent not analyzed for.

NE = Not established

ug/L = micrograms per liter

{Highlighted} exceeds SWPC criteria

B = Estimated value (inorganics) or constituent detected in associated method blank (organics), lab qualifier

J = Estimated value, lab and/or validation qualifier

Groundwater Analytical Results - May 2014 through December 2015

Middletown Power LLC, Middletown, CT

		TW-10	TW-10	TW-10	TW-10	TW-14	TW-14	TW-14	TW-14	TW-17D	TW-17D	TW-17D	TW-17D
		5/6/2014	9/19/2014		12/10/2015		9/19/2014	5/20/2015	12/10/2015	5/5/2014	9/18/2014		12/10/2015
CONSTITUENT	SWPC	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
SVOCs (ug/L)													
2-Methylnaphthalene	62												
Acenaphthene	NE												
Acenaphthylene	0.3												
Anthracene	1100000												
Benzo(a)anthracene	0.3												
Benzo(a)pyrene	0.3												
Benzo(b)fluoranthene	0.3												
Benzo(ghi)perylene	NE												
Benzo(k)fluoranthene	0.3												
Chrysene	NE												
Dibenzo(a,h)anthracene	NE												
Fluoranthene	3700												
Fluorene	140000												
Indeno(1,2,3-cd)pyrene	NE												
Naphthalene	NE												
Phenanthrene	14												
Pyrene	110000												
EPH (ug/L)													
C9-C18 Aliphatics (FID)	770												
C19-C36 Aliphatics (FID)	530												
C11-C22 Aromatics	100												
Metals (ug/L)													
Arsenic	4	{4.6}	<2.4	<1.7	<1.7	<2.9	<2.4	<1.7	<1.7	<2.9	<2.4	<1.7	<1.7
Lead	13	<1.7	<1.9	<1.7	<1.7	<1.7	<1.9	<1.7	<1.7	<1.7	<1.9	<1.7	<1.7
Selenium	50	<4.8	2.8BJ	<2.0	<2.0	<4.8	<2.7	<2.0	<2.0	49.1	{54.3}	46.8	{50.3}
Vanadium	NE	7.5BJ	2.4BJ	<0.51	5.0BJ	4.6BJ	6.6BJ	2.0BJ	2.2BJ	400	381	471	298
Zinc	123	<5.6BU	8.7BJ	<7.3BU	<5.5BU	<6.8BU	9.7BJ	<14.5BU	<2.4BU	<6.3BU	7.2BJ	<5.5BU	<3.6BU

Notes:

SWPC = Connecticut Surface Water Protection Criteria and site specific alternative and additional criteria where applicable.

SWPC for aliphatic and aromatic hydrocarbon ranges from February 2016 CTDEEP Request for Approval

for Use of EPH/VPH/APH Methods and Associated Criteria.

--- = Constituent not analyzed for.

NE = Not established

ug/L = micrograms per liter

{Highlighted} exceeds SWPC criteria

B = Estimated value (inorganics) or constituent detected in associated method blank (organics), lab qualifier

J = Estimated value, lab and/or validation qualifier

Groundwater Analytical Results - May 2014 through December 2015

Middletown Power LLC, Middletown, CT

		TW-18	TW-18	TW-18	TW-18	TW-18	TW-18	TW-18	TW-18	TW-21D	TW-21D	TW-21D	TW-21D
		5/6/2014	5/6/2014	9/18/2014	9/18/2014	5/20/2015	5/20/2015	12/10/2015	12/10/2015	5/6/2014	9/18/2014	5/20/2015	12/10/2015
CONSTITUENT	SWPC	Primary	Duplicate 1	Primary	Duplicate 1	Primary	Duplicate 1	Primary	Duplicate 1	Primary	Primary	Primary	Primary
SVOCs (ug/L)													
2-Methylnaphthalene	62												
Acenaphthene	NE												
Acenaphthylene	0.3												
Anthracene	1100000												
Benzo(a)anthracene	0.3												
Benzo(a)pyrene	0.3												
Benzo(b)fluoranthene	0.3												
Benzo(ghi)perylene	NE												
Benzo(k)fluoranthene	0.3												
Chrysene	NE												
Dibenzo(a,h)anthracene	NE												
Fluoranthene	3700												
Fluorene	140000												
Indeno(1,2,3-cd)pyrene	NE												
Naphthalene	NE												
Phenanthrene	14												
Pyrene	110000												
EPH (ug/L)													
C9-C18 Aliphatics (FID)	770												
C19-C36 Aliphatics (FID)	530												
C11-C22 Aromatics	100												
Metals (ug/L)													
Arsenic	4	{11.0}	{12.5}	<2.4	<2.4	2.0BJ	1.9BJ	<1.7	<1.7	<2.9	<2.4	<1.7	<1.7
Lead	13	2.9BJ	2.9BJ	<1.9	<1.9	<1.7	<1.7	<1.7	<1.7	<1.7	<1.9	<1.7	<1.7
Selenium	50	{53.7}	{56.7}	<2.7	<2.7	<2.0	<2.0	<2.0	<2.0	32.4	35.5	35	35.9
Vanadium	NE	161	167	16.1	16	12.9	12.5	11	11.1	<2.8	8.3BJ	7.1BJ	6.8BJ
Zinc	123	<6.0BU	<5.7BU	6.5BJ	12.9BJ	<7.0BU	<7.0BU	<1.8BU	<1.6BU	<5.4BU	6.9BJ	5.2B	<3.0BU

Notes:

SWPC = Connecticut Surface Water Protection Criteria and site specific alternative and additional criteria where applicable.

SWPC for aliphatic and aromatic hydrocarbon ranges from February 2016 CTDEEP Request for Approval

for Use of EPH/VPH/APH Methods and Associated Criteria.

--- = Constituent not analyzed for.

NE = Not established

ug/L = micrograms per liter

{Highlighted} exceeds SWPC criteria

B = Estimated value (inorganics) or constituent detected in associated method blank (organics), lab qualifier

J = Estimated value, lab and/or validation qualifier

BRUCE L. MCDERMOTT 203,772,7787 DIRECT TELEPHONE 860,240,5723 DIRECT FACSIMILE BMCDERMOTT@MURTHALAW.COM

April 11, 2016

Mr. Patrick Bowe Director Remediation Division Bureau of Water Protection & Land Reuse Department of Energy and Environmental Protection 79 Elm Street Hartford, CT 06106-5127

Re: NRG Energy, Middletown

Dear Mr. Bowe:

On behalf of NRG Energy and in response to your November 30, 2015 correspondence regarding the request for an alternative method of compliance with the Environmental Land Use Restriction ("ELUR") for an Approved Engineered Control Variance for the Middletown Facility, we write to document the efforts that have been made to record an ELUR on the DOT Parcel and to document why removing the waste from the DOT parcel is not a viable option. In addition, we seek your assistance in working with DOT to close out NRG's Middletown Transfer Act site, via use of an ELUR or any other "out of the box" method that meets DEEP's goals, as well as NRG and DOT's goals.

We understand from our meeting in October that the Commissioners of DEEP and DOT meet on a monthly basis and we would like to request that the agencies broach the topic of the ELUR during the next meeting. Finishing this site is as much a priority to NRG as it is to DEEP and any means by which DEEP can assist in reaching this goal would be appreciated.

ELUR

Historically, DOT had expressed a willingness to execute an ELUR for the strip of property. In May of 2013, we, on behalf of NRG, reached out to DOT to discuss access to the site, as well as how to coordinate the ELUR. An appraiser, who was an approved

appraiser for DOT, was retained to appraise the subject strip of land. The appraiser reported that the value of the strip was approximately \$40,000, having been reduced by \$110,000 due to the presence of historic contamination. As a result, DOT offered to execute the ELUR in exchange for \$110,000. NRG disputed the figure on the grounds that contamination, rather the cap or the ELUR, caused the loss in value. Thus, the cap and ELUR would resolve contamination issues in accordance with state law and generally restore the value of the property. DOT disputed the method utilized by the appraiser and subsequently took a firm stance against any ELUR on the strip.

Despite DOT's initial willingness to execute an ELUR, since DOT determined that it would not execute an ELUR, it has highlighted two key concerns:

Setting a precedent for executing ELURs.

With significant stretches of property throughout the State of Connecticut, DOT has concerns over setting a precedent in executing this ELUR. The key concern is managing a multitude of ELURs within its property if other entities began approaching DOT to execute ELURs on other pieces of DOT's property. NRG responded to the concern by reaffirming its intention of assuming responsibility for actively monitoring within the quarter-acre strip of land.

Functional Value.

DOT has expressed concern over their ability to utilize the property as planned. During a 2013 meeting with DOT, it was noted that there was a relatively high chance that the portion of the railroad that abutted the subject strip would be will be reactivated within 2 years. DOT had concerns that if the railroad is reactivated, the ELUR would prevent ease of access for construction and maintenance in the area, as well as require extra precautions during construction and maintenance workers (i.e. OSHA training for workers).

While the ELUR may necessitate obtaining a release from DEEP to complete the necessary construction and maintenance for the reason that restriction would abut the "toe of the slope" for the railway, the incremental cost of these burdens, to the extent that they are created as a result of the ELURs, would be borne by NRG. Moreover, a Temporary Conditional Release ("TCR") could be utilized to alleviate some of the burdens for any regularly conducted maintenance that may need to be done if the railroad is activated in that area.

Ultimately, NRG and DOT agreed to resolve the issues with a licensing agreement that would permit NRG access to the DOT strip to install, and perform necessary maintenance of, the engineered control. NRG, via the agreement, would agree to perform the maintenance, as well as absorb any incremental costs incurred by DOT in operating the railroad. DOT also agreed not to disturb the capped area without consulting with NRG, so that NRG may work with DEEP to ensure that the work is done in an approved manner. The intent of the licensing agreement was to satisfy DOT's concerns and avoid a precedent of issuing ELURs, however, mimic the language of the ELUR so that DEEP's goals in instituting ELURs were met.

NRG and DOT agreed to seek DEEP's assistance with crafting the final language of the agreement so that the agreement would adequately mimic an ELUR and allow NRG to verify its property, including the off-site issues. As you recall, upon meeting with DEEP on October 7, 2015, DEEP suggested adding itself as a party to the agreement to provide DEEP with a mechanism by which to enforce the agreement. Unfortunately, DEEP ultimately determined that this mechanism would not adequately address the issues at the site.

As a last effort, NRG approached DOT regarding purchasing the strip of land and providing an easement back to DOT for their continued use. This would provide NRG with the ability to put the easement on the property themselves and allow DOT to continue use of the land without having to manage the ELUR aspect. Unfortunately, DOT is not interested in this concept.

Soil Removal Option

As discussed during the October 7, 2015 meeting at DEEP, removal of the impacted soil for offsite disposal or consolidation back into the former settling basin is not a viable option in this scenario. In order to accomplish this task, approximately 800 linear feet by at least 15 feet deep would need to be removed as shown on Figure 2. The specific removal area is shown as the highlighted orange trapezoid area with property line in the middle. This is approximately 20,000 cubic yards of soil. Once a work design package was completed and approved, a contractor would need to excavate the material, partially dewater the excavation, stockpile the soil in SB-2, backfill the excavation with clean soil, compact, and regrade. The cap at SB-2 would need to be redesigned to accommodate the 20,000 cubic yards of soil generated from the removal activities. Then the cap would be constructed in a similar fashion to the currently approved design. This would add an additional \$1.5 million to the existing costs for the cap project. The complexities of working adjacent to the railroad track and working in a former ash basin make this work risky and expensive. A basic cost benefit analysis shows that that the work is not worth the small incremental benefit compared to constructing the cap now (with no removal activities) as currently designed.

Again, we seek your assistance in working with DOT to develop a plan to close out NRG's Transfer Act obligations at the Middletown site. If you have any questions about any of the submitted information, please do not hesitate to call. Thank you for your help.

Very truly yours,

Bruce L. McDermott

Drawings

- 1. Proposed ELUR area
- 2. Figure 2

cc: David Ringquist, DEEP
Peter Hill, DEEP
Michelle Bedson, DEEP
Juan Perez, EPA
Julie Thomas, CDOT
Tracy Stanton, NRG
Robert Spooner, NRG
Andrew D. Walker
Alfred E. Smith

Job Name: **NRG Middletown** 1009634028 - 00121110 Job Number:

Well ID:	BIIID: AOCI-MW/R				12/10/18	Ś		Depth To Water: 3/	1.05	Depth To Bottom: 39.45		
Screen Inte				Target Pum	p Intake Depth	:					1	
Pump Type	: 650	TI		Actual Pum	p Intake Depth	: 3	381	Total Volume	Total Volume Purged: 3,000m			
Time	Depth to Water (ft.)	Pump Dial Setting ¹	Purge Rate (ml./min.)	Cum. Volume Purged (Liters)	Temperature (°C)	pH (SU)	Specific Conductance (ms/cm) ²	Dissolved Oxygen (mg/L)	ORP ³ (mV)	Turbidity (NTU)	Comments	
Stabilizati	on Criteria		3% //		3%	0.1	3%	10% or <2	10	10% or <1	for three consecutive readings	
1000	31,05	Low	100 mm		11.46	7,13	0,897	1.60	235.0	31.8	CHER	
1005	31.06)			11.67	7.11	0.876	1.55	218.7	22.1		
1010	31.07				12.01	7.09	0.835	1.50	201.1	12.4		
1015	31.08				12.13	7.04	0.817	1.41	183.9	2.0		
1020	31.09				12,21	6.99	0.806	1.32	170.6	0.7		
1025	31.10				12,25	6.95	0.803	1.28	168.1	0.5		
1030	31.11	V	V	3,000 M	1230	6.92	0.801	1.25	166.4	0.3	V SMAPLED	
				,								
											_	

Field Personnel:	D. USMY	

Pump dial setting (example: Hertz, cycles/min, etc.)
 μSiemens per cm (same as μmhos/cm) at 25°C.

^{3.} Oxidation reduction potential (ORP)

Job Name:	NRG Middletown	
Job Number:	1009634028 - 00121110	

Well ID:	ACCI	- MW-	2	Date:	12/10/1	5			Depth To Water: 31	.80	Depth To Bottom: 39,90
Screen Interval:				Target Pum	p Intake Depth				0		
Pump Type	: 62	OIL		Actual Pum	p Intake Depth	: 38	/		Total Volume	e Purged:	3,000 ml
Time	Depth to Water (ft.)	Pump Dial Setting ¹	Purge Rate (ml./min.)	Cum. Volume Purged (Liters)	Temperature (°C)	pH (SU)	Specific Conductance (ms/cm) ²	Dissolved Oxygen (mg/L)	ORP ³ (mV)	Turbidity (NTU)	Comments
Stabilizati	on Criteria		3%/)		3%	0.1	3%	10% or <2	10	10% or <1	for three consecutive readings
0915	31.80	LOW	100 m		15,05	7.07	1.052	2.88	-57.3	39.0	CHIR
0920	31.81	1			15.16	7.02	1.0,73	2,17	-50,5	24.6	
0925	31.82		-		15.22	6,98	1.098	1.46	-44.8	13.3	
0930	31.83				15.27	6.95	1.125	1.08	-40.6	3.0	
0935	31.84				15.32	6.92	1.130	0.99	-331	0.9	
0940	31.85			2	15.34	6.89	6132	0.95	-315	0.7	
0945	31.86	V	V	3,000	15.35	6.87	1.136	0.92	-30.8	0.6	V SAMPLED

ield Personnel:	D. LEMY	

Pump dial setting (example: Hertz, cycles/min, etc.)
 μSiemens per cm (same as μmhos/cm) at 25°C.

^{3.} Oxidation reduction potential (ORP)

Job Name:	NRG Middletown	
Job Number:	1009634028 - 00121110	Y

Well ID:	1002-	S131-11	ywl	Date:	12/10/1	5			Depth To Water: 24	1.83	Depth To Bottom: 35.75
Screen Inte	rval:		P .	Target Pum	p Intake Depth	:	,				
Pump Type	: 6%	OIL		Actual Pum	p Intake Depth	: 3	41		Total Volume	e Purged:	3,000 ml
Time	Depth to Water (ft.)	Pump Dial Setting ¹	Purge Rate (ml./min.)	Cum. Volume Purged (Liters)	Temperature (°C)	pH (SU)	Specific Conductance (ms/cm) ²	Dissolved Oxygen (mg/L)	ORP ³ (mV)	Turbidity (NTU)	Comments
Stabilizati	on Criteria		3%/)		3%	0.1	3%	10% or <2	10	10% or <1	for three consecutive readings
1430	24.83	Low	100 m		15.03	6.04	0.270	4.32	119.1	47.3	CLERR
1435	24.84	1	1		15.11	6.01	0.269	4.10	130.7	21.8	
1440	24.85				15.18	5.99	0.268	3.88	155.8	9.2	
1445	24.86				15.23	5.97	0.266	3.54	176.4	2.0	
1450	24.87				15.28	5.95	0.264	3.38	181.3	0.8	
1455	24.88	1		Ω	15.32	5.94	0.262	3.30	182.9	0,6	
1500	24.89	V	V	3,000 N	15.36	5.93	0.266	3.27	1842	05	V SAMPLED

- Pump dial setting (example: Hertz, cycles/min, etc.)
 μSiemens per cm (same as μmhos/cm) at 25°C.
- 3. Oxidation reduction potential (ORP)

Field Personnel:	D. VEARY
------------------	----------

Job Name:	NRG Middletown	
Job Number:	1009634028 - 00121110	

Well ID:	AOCS	-mw	1	Date:	12/10/1	5		1	Depth To Water:	5.86	Depth To Bottom: 24.30
Screen Int	erval:	-	重	Target Pum	p Intake Depth						
Pump Type	e: GE	OI	10	Actual Pum	p Intake Depth	. 9	3'		Total Volume	Purged: 3	,000 ml
Time	Depth to Water (ft.)	Pump Dial Setting ¹	Purge Rate (ml./min.)	Cum. Volume Purged (Liters)	Temperature (°C)	pH (SU)	Specific Conductance (ms/cm) ²	Dissolved Oxygen (mg/L)	ORP ³ (mV)	Turbidity (NTU)	Comments
Stabiliza	tion Criteria		3% ()		3%	0.1	3%	10% or <2	10	10% or <1	for three consecutive readings
1335	15.86	LOW	1000/		13.04	6.13	0.155	0.84	24.8	27.6	CLEAR
1340	15,87				12.95	6.08	0.162	0.75	10.9	15.2	
1345	15.88				12.84	6.02	0.173	0.70	-1.2	6.6	
1350	15.89				12.77	5.99	0.179	0.67	-9.4	1.8	
1355	15,90				12.73	5.96	0.183	0.63	-15.2	0.9	
1400	15.91	/		0	12.69	5.94	0.186	0,59	-17.3	0.7	
1405	15.92	V	V	3,000.4	12:66	5192	0.188	0.56	-19.0	0,6	V SAMPUED
				5.0							
				. A							

Pump dial setting (example: Hertz, cycles/min, etc.)
 μSiemens per cm (same as μmhos/cm) at 25°C.

3. Oxidation reduction potential (ORP)

4. Target Drawdown not to exceed is 0.3 ft (about 4 inches)

Field Personnel:

Job Name:	NRG Middletown	
Job Number:	1009634028 - 00121110	

Well ID:	AOC8-	5131-1	uw/	Date:	12/1	1/15			Depth To Water:	0,08	Depth To Bottom: 32,03
Screen Interval:			Target Pun	np Intake Depth	:						
Pump Type	e: 6	EO II		Actual Pum	p Intake Depth	: 3	1'		Total Volume	e Purged:	3,000 ml
Time	Depth to Water (ft.)	Pump Dial Setting ¹	Purge Rate (ml./min.)	Cum. Volume Purged (Liters)	Temperature (°C)	pH (SU)	Specific Conductance (ms/cm) ²	Dissolved Oxygen (mg/L)	ORP ³ (mV)	Turbidity (NTU)	Comments
Stabilizat	tion Criteria		3% /		3%	0.1	3%	10% or <2	10	10% or <1	for three consecutive readings
0900	20.08	Low	10010	1	20.53	6.67	0.202	0.70	-40.7	401	CLEUR
0905	20.09	11			20.70	6.63	0.217	0.67	-52.8	21.7	
0910	20,10				21.02	6.58	0,211	0.63	-630	12.9	
0915	20.11				21.17	6,53	0.206	0.59	-67.2	2,7	
0920	20.12				21.36	6.49	0.202	0.56	-71.3	0.9	
0925	20.13				21.40	6.46	0:199	0.52	-73.9	0.7	
3930	20,14	V	V	3,0000	21,42	6.43	0,198	0.49	-75,6	0,5	V SAWALED
				, (

3. Oxidation reduction potential (ORP)

4. Target Drawdown not to exceed is 0.3 ft (about 4 inches)

Field Personnel: D. CHMY

Pump dial setting (example: Hertz, cycles/min, etc.)
 μSiemens per cm (same as μmhos/cm) at 25°C.

Job Name:	NRG Middletown	
Job Number:	1009634028 - 00121110	

Well ID: AOC9-8B1-MW1			Date:	12/11	115			Depth To Water: 24.76 Bottom: 34.62				
	Screen Interval:				Target Pump Intake Depth:							
Pump Type: OSO II				Actual Pum	p Intake Depth	: 3	3'		Total Volume	Purged:	3,000 m	
Time	Depth to Water (ft.)	Pump Dial Setting ¹	Purge Rate (ml./min.)	Cum. Volume Purged (Liters)	Temperature (°C)	pH (SU)	Specific Conductance (ms/cm) ²	Dissolved Oxygen (mg/L)	ORP ³ (mV)	Turbidity (NTU)	Comments	
Stabilizati	on Criteria		3% /		3%	0.1	3%	10% or <2	10	10% or <1	for three consecutive readings	
0740	24.76	cow	100 m		17.00	6,49	0.859	0.92	-77.3	26.5	CUER	
0745	24.77				17.56	6.49	0.857	0.84	-80.2	20.7		
0750	24.78				18.00	6.49	0.861	0.79	-83,0	11.5		
0753	24.79				18.05	6.49	0.862	0.74	-863	3.3		
0800	24.79				18.19	6.49	0.863	0.66	-894	0.8		
0805	24.80				18.21	6.49	0.864	0.62	-91.8	0.5		
0810	24.80	$\sqrt{}$	A	3,000 N	18,23	6.49	0.865	0.59	-93.9	0.4	V SIMPRED	
				,								
			W W		_				- 1			
			00 11									

1. Pump dial setting (example: Hertz, cycles/min, etc.)
2. µSiemens per cm (same as µmhos/cm) at 25°C.

3. Oxidation reduction potential (ORP)

4. Target Drawdown not to exceed is 0.3 ft (about 4 inches)

Field Personnel:

Job Name:	NRG Middletown	
Job Number:	1009634028 - 00121110	

Well ID: ACC9-SB2-MW2			Date:	12/11	115			Depth To Water: 2	2,12	Depth To Bottom: 34,50	
Screen Inte	Screen Interval:			Target Pump Intake Depth:							
Pump Type: 620 II				Actual Pum	p Intake Depth	: 33	/		Total Volume	e Purged:	3,000ml
Time	Depth to Water (ft.)	Pump Dial Setting ¹	Purge Rate (ml./min.)	Cum. Volume Purged (Liters)	Temperature (°C)	pH (SU)	Specific Conductance (ms/cm) ²	Dissolved Oxygen (mg/L)	ORP ³ (mV)	Turbidity (NTU)	Comments
Stabilizati	ion Criteria		3% ()		3%	0.1	3%	10% or <2	10	10% or <1	for three consecutive readings
1015	29/12	LOW	100 00		15.27	6.16	1.500	1.77	-41.6	40.3	CULL
1020	22,14				15.22	6.14	1.509	1.33	-45.0	25.6	
1025	22,15				15.17	6,17	1.513	1.08	-47.5	13.1	
1030	22,16				15,13	6.18	1.517	0.83	-528	2.9	
1035	9217				15.10	6.19	1,520	0.73	-56.2	0.7	
1040	22.18	,		Δ	15.08	6.22	1.523	0.69	-58.1	0,5	
1045	22,19	V	V	3,000	15.06	6.24	1.526	0,61	-60,9	0,3	V SAMPLED
				7							
											<u> </u>
-											-

Field Personnel: D. WARY

Pump dial setting (example: Hertz, cycles/min, etc.)
 μSiemens per cm (same as μmhos/cm) at 25°C.

^{3.} Oxidation reduction potential (ORP)

Job Name:	NRG Middletown	
Job Number:	1009634028 - 00121110	

Well ID:	TU	1-16		Date:	12/10	18			Depth To Water:	6.25	Depth To Bottom: 47.45	
Screen Interval:				Target Pum	p Intake Depth	:				0		
Pump Type: 650 II					p Intake Depth		76 m		Total Volume	Total Volume Purged: 3,000 M		
Time	Depth to Water (ft.)	Pump Dial Setting ¹	Purge Rate (ml./min.)	Cum. Volume Purged (Liters)	Temperature (°C)	pH (SU)	Specific Conductance (ms/cm) ²	Dissolved Oxygen (mg/L)	ORP ³ (mV)	Turbidity (NTU)	Comments	
Stabilizat	ion Criteria		3%/)		3%	0.1	3%	10% or <2	10	10% or <1	for three consecutive readings	
0745	26.05	LOW	100 mg		14-83	6.70	0.225	2,42	56.9	3511	CLEIR	
0850	26,26	1	1		14.85	6.62	0,228	2,30	58.4	28.7		
0755	26.27				14.91	651	0.230	2.21	60.7			
0800	2627				14.93	6.45	0.232	2.16	63.4	2.0		
0805	2628				14.97	6.41	0.234	2.10	65.9	0.8		
0810	26,29			0	15:00	6.39	0.236	\$2.05	67.1	0.6		
0815	26,29	1	V	3,000 2	15:02	6.36	0.237	2.02	68.9	0.5	SAMPLES	

Pump dial setting (example: Hertz, cycles/min, etc.)
 μSiemens per cm (same as μmhos/cm) at 25°C.

3. Oxidation reduction potential (ORP)

4. Target Drawdown not to exceed is 0.3 ft (about 4 inches)

Field Personnel:

Job Name:	NRG Middletown	
Job Number:	1009634028 - 00121110	

Well ID:	TW-	14		Date:	12/10/1	5			Depth To Water: 2	9.32	Depth To Bottom: 42-71
Screen Interval:			Target Pum	p Intake Depth	:	. ,					
Pump Type: GEO TE				Actual Pum	p Intake Depth	: 4	*		Total Volume	e Purged:	3,000 ml
Time	Depth to Water (ft.)	Pump Dial Setting ¹	Purge Rate (ml./min.)	Cum. Volume Purged (Liters)	Temperature (°C)	pH (SU)	Specific Conductance (ms/cm) ²	Dissolved Oxygen (mg/L)	ORP ³ (mV)	Turbidity (NTU)	Comments
Stabilizat	tion Criteria		3%/)		3%	0.1	3%	10% or <2	10	10% or <1	for three consecutive readings
0835	29.32	Low	100 84		14.15	6.82	0.188	3,26	83,9	25,2	CUAR
0840	29.33	ì	1		14,22	6.73	0.185	2.81	72.7	17.8	1 1
0845	29,33				14,58	6.49	0.182	2,18	68.1	10.7	
0850	29.34				14.73	6.42	0.179	1.95	57.8	1.9	
0855	29.34				14.80	6.37	0.177	1.86	480	0.6	
0900	29.35			/	14.84	6.34	0.176	1.81	45.9	0.5	
0905	29.35	V	V	3,000 h	14.88	6.32	0,175	1.77	44.6	0.3	V SAMPLED

Field Personnel:	D. CEMAY	
	Ci Com	

Pump dial setting (example: Hertz, cycles/min, etc.)
 μSiemens per cm (same as μmhos/cm) at 25°C.

^{3.} Oxidation reduction potential (ORP)

Job Name:	NRG Middletown	
Job Number:	1009634028 - 00121110	

Well ID:	TW-1	7D		Date:	12/10/15				Depth To Water:	31.41	Depth To Bottom: 39.78
Screen Inte	rval:			Target Pum	p Intake Depth	:	7				
Pump Type	: 62	OIL		Actual Pum	p Intake Depth	: 3	81		Total Volume	Purged:	3,000ml
Time	Depth to Water (ft.)	Pump Dial Setting ¹	Purge Rate (ml./min.)	Cum. Volume Purged (Liters)	Temperature (°C)	pH (SU)	Specific Conductance (ms/cm) ²	Dissolved Oxygen (mg/L)	ORP ³ (mV)	Turbidity (NTU)	Comments
Stabilizati	on Criteria		3% /)		3%	0.1	3%	10% or <2	10	10% or <1	for three consecutive readings
1155	31.41	LOW	100 14		15.22	7.05	0.761	3,05	18.0	30.9	CLEAR
1200	31.42				15,29	7,08	0.773	2.75	26.7	14.0	
1205	31,43				15.38	7.12	0.781	2.36	325	3.3	
1210	31,44				15.45	7.15	0.785	2.02	49.3	1.9	
1215	31.44				15,517	7.17	0.788	1.83	57.9	0.8	
1220	31.45			0	15,55	7,18	0.791	1.76	605	0.7	
1225	31.46	V	V	3,000	15.57	7.19	0.793	1.72	617	015	V SIMPLED

Pump dial setting (example: Hertz, cycles/min, etc.)
 μSiemens per cm (same as μmhos/cm) at 25°C.

3. Oxidation reduction potential (ORP)

4. Target Drawdown not to exceed is 0.3 ft (about 4 inches)

Field Personnel:

D. VERRY

Job Name:	NRG Middletown	
Job Number:	1009634028 - 00121110	У.

Well ID:	TW-	-18		Date:	12/10/1	5			Depth To. Water: 3	4.09	Depth To Bottom: 41.15
Screen Inte	erval:			Target Pum	p Intake Depth	:				1	
Pump Type	: 62	OIL		Actual Pum	p Intake Depth	: 40	01		Total Volume	Purged: 3	3,000ml
Time	Depth to Water (ft.)	Pump Dial Setting ¹	Purge Rate (ml./min.)	Cum. Volume Purged (Liters)	Temperature (°C)	pH (SU)	Specific Conductance (ms/cm) ²	Dissolved Oxygen (mg/L)	ORP ³ (mV)	Turbidity (NTU)	Comments
Stabilizat	ion Criteria		3%/)		3%	0.1	3%	10% or <2	10	10% or <1	for three consecutive readings
1050	34.09	Lau	100 mg		12.35	7.56	0.635	3,17	2.6	31.9	CUERR
1055	34.10	1			12.41	7.58	0.637	2.57	9.4	20.7	
1100	34.11				12.47	7.61	0,640	2.19	18.3	8.8	
1105	34.12				12.55	7.65	0.645	1.83	22.1	3.3	
1110	34.13				12.60	7.68	0.649	1.74	25.9	0.8	
1115	34.14			Λ	12.63	7.72	0.651	1.69	27.9	0.6	
1120	34.15	V	V	3,000.10	12.66	7.75	0.653	1.67	28.4	0.4	V SAMPUSO
				, ,							
					V						
					*	9250 V	DID M	ETALS	DUP	200	
									(39	

Pump dial setting (example: Hertz, cycles/min, etc.)
 μSiemens per cm (same as μmhos/cm) at 25°C.

3. Oxidation reduction potential (ORP)

4. Target Drawdown not to exceed is 0.3 ft (about 4 inches)

Field Personnel:

Job Name:	NRG Middletown	
Job Number:	1009634028 - 00121110	

Well ID:	TW-	2/1		Date:	12/10/15	Si .			Depth To Water:	3/-26	Depth To Bottom: 41.10
Screen Inte	erval:			Target Pum	p Intake Depth	:				1	
Pump Type	: 638	II		Actual Pum	p Intake Depth	: 40	21		Total Volum	ne Purged:	3,000 ml
Time	Depth to Water (ft.)	Pump Dial Setting ¹	Purge Rate (ml./min.)	Cum. Volume Purged (Liters)	Temperature (°C)	pH (SU)	Specific Conductance (ms/cm) ²	Dissolved Oxygen (mg/L)	ORP ³ (mV)	Turbidity (NTU)	Comments
Stabilizat	ion Criteria		3% /		3%	0.1	3%	10% or <2	10	10% or <1	for three consecutive readings
1250	31.26	low	100 m		14.83	7.13	0,560	2.88	0.5	26.1	CLEAR
1355	31.27	1			14.98	7.26	0.565	2.12	4.8	16.7	
1300	31.28				15.08	7.30	0.568	1.67	12.5	9.2	
1305	31.29				15.11	7.37	0.572	1.56	19.2	2.8	
1310	31.30				15,14	7.40	0.577	1.48	21.7	0.7	
1315	31.31			Λ	15.16	7.42	0:581	1.43	23.9	0.5	
1320	31.32	0	V	3,000M	15.17	7.44	0.585	1.40	25.3	03	V SAMPLED
				, ,							
-											
		*						ľ		4	(4)
										1	
							-			-	

4. Target Drawdown not to exceed is 0.3 ft (about 4 inches)

Field Personnel:	D. VERMY	

Pump dial setting (example: Hertz, cycles/min, etc.)
 μSiemens per cm (same as μmhos/cm) at 25°C.

^{3.} Oxidation reduction potential (ORP)

Data Usability Worksheet

 Project Name :
 NRG Middletown
 Job Number :
 1009634028

 Prepared By:
 Ana Fioretti
 Date :
 1/5/2016

 Validated By:
 Ana Fioretti
 Date :
 1/5/2016

 Matrix:
 Groundwater

Analyte Group: PAH 8270D SIM

 PAH 8270D SIM
 Analytical Method :
 8270D SIM

 MADEP EPH
 MADEP EPH

 Metals
 EPA 6010C

Completed RCP Certification Form included: Yes Laboratory ID No.: MC43503

Chain of Custody included in Data Package ? Yes Is it Complete ? Yes

		Allowable	Allowable	
Sample Collection Date	Analysis	Holding Time for	Holding Time	Analysis Date
12/10/15, 12/11/15	PAH 8270D SIM	14 Days	40 Days	12/24/15
12/10/15, 12/11/15	MADEP EPH	14 Days	40 Days	12/22/15
12/11/2015	EPA 6010C (Ar)	180 Days	180 Days	12/21/15
12/10/15, 12/11/15	EPA 6010C (METALS)	180 Days	180 Days	12/21/15

Sample temperature within QC limits: Yes, 1.0° C

Surrogate Recovery

Are all % recoveries within the allowable range? Yes

If No, List sample ID where range was exceeded: N/A

MS/MSD

Are all MS/MSD sample recoveries within the QC limits? N/A

If No, list sample ID, date and compound where limit was ex N/A

Laboratory Control Samples

Are all laboratory control sample recoveries within the QC li Yes

If no, list sample ID where range was exceeded:

Equipment Field Blank ID: EB-1 12/10/2015

Trace amounts of Naphthalene (0.17 ug/L/5X = 0.75) detected in the EB; This contaminant also detected in the method blank Trace amounts of zinc (1.5 ug/L/5X = 7.5) detected in the EB; Zinc results qualified U where results are < 5X the amount found in the blank.

Trip Blank ID: N/A

Method Blank: 12/22/2015, OP45788-MB 12/18/15

Were any compounds identified in the method blank, field blank or trip blank above detection limits ?

If so, list Sample ID/Compound/Concentration/Units: See Notes

Notes:

Batch ID: OP45788

Sample(s) MC43503-10, MC43503-12, MC43503-13, MC43503-14, MC43503-15, MC43503-3 have compound(s) reported with a "B" qualifier, indicating analyte is found in the associated method blank.

Trace amounts of naphthalene (0.18 $\frac{\text{ug}}{\text{L}}$ 5X = 0.9) were detected in OP45788-MB method blank.

Qualify these compounds where results are < 5X the amount found in the blank as "U" for associated samples.

MC43503-10, 12, 13, 14, 15, 3, OP45788-BS/BSD/MB have Nitrobenzene-d5, Terphenyl-d14 outside control limits. Surrogate standard not added. EPH extract analyzed.

No qualification necessary

Quadratic regression is employed for initial calibration standard MSI3694-ICC3694 for Benzo[a]anthracene, Benzo[b]fluoranthene, Benzo[k]fluoranthene, Benzo[a]pyrene, Indeno[1,2,3-cd]pyrene, Dibenz[a,h]anthracene, Benzo[g,h,i]perylene.

Batch ID: MP25623

Sample(s) MC43534-8SDL were used as the QC samples for metals.

RPD(s) for Serial Dilution for Lead are outside control limits for sample MP25623-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL). No qualification necessary

Results reported > MDL and < RL qualified "J" unless U qualified due to blank contamination.

Reviewed By: Kim Napier

Client Sample ID: TW-10

Lab Sample ID: Matrix:

MC43503-1

AQ - Ground Water

Date Sampled: 12/10/15 Date Received: 12/15/15

Percent Solids: n/a

Project:

NRG Middletown, 1866 River Road, Middletown, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	1.7 U	4.0	1.7	ug/I	1		12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Lead	1.7 U		1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Selenium	2.0 U		2.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Vanadium	5.0B J		0.51	ug/l	1		12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Zinc	5.5 B 🔼	20	1.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18774

(2) Prep QC Batch: MP25623

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

Client Sample ID: TW-14 Lab Sample ID:

MC43503-2

Matrix:

AQ - Ground Water

Date Sampled: 12/10/15

Date Received: 12/15/15 Percent Solids: n/a

Project:

NRG Middletown, 1866 River Road, Middletown, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	1.7 U	4.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Lead	1.7 U	5.0	1.7	ug/I	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Selenium	2.0 U		2.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Vanadium	2,2 B 🗊	10	0.51	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Zinc	2.4 B 🙏	20	1.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18774

(2) Prep QC Batch: MP25623

Report of Analysis

Page 1 of 1

Client Sample ID: AOC1-MW2 Lab Sample ID:

MC43503-4

Date Sampled: 12/10/15 Date Received: 12/15/15

Matrix:

AQ - Ground Water

Percent Solids: n/a

Project:

NRG Middletown, 1866 River Road, Middletown, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic Lead Selenium Vanadium Zinc	1.77 B 3. 1.7 U 2.0 U 0.51 U 1.1 B //L	5.0 10 10	1.7 1.7 2.0 0.51 1.0	ug/l ug/l ug/l ug/l ug/l	1 1 1 1	12/18/15 12/18/15 12/18/15	12/21/15 EC 12/21/15 EC 12/21/15 EC 12/21/15 EC 12/21/15 EC	SW846 6010C ¹ SW846 6010C ¹ SW846 6010C ¹ SW846 6010C ¹ SW846 6010C ¹	SW846 3010A ² SW846 3010A ² SW846 3010A ² SW846 3010A ² SW846 3010A ²

(1) Instrument QC Batch: MA18774

(2) Prep QC Batch: MP25623

MDL = Method Detection Limit

U = Indicates a result < MDL

 $B = Indicates \ a \ result \ > = \ MDL \ but \ < \ RL$

Client Sample ID: AOC1-MW1R Lab Sample ID: MC43503-5 Matrix:

AQ - Ground Water

Date Sampled: 12/10/15 Date Received: 12/15/15

Percent Solids: n/a

Project:

NRG Middletown, 1866 River Road, Middletown, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	1.7 U		1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Lead	1.7 U	5.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Selenium	8.0 B J		2.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Vanadium	1.3 B 📆	10	0.51	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Zinc	3.8 B 🚜	20	1.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18774 (2) Prep QC Batch: MP25623

Page 1 of 1

Client Sample ID: TW-18

Lab Sample ID: MC43503-6

AQ - Ground Water

Date Sampled: 12/10/15

Date Received: 12/15/15 Percent Solids: n/a

Project:

Matrix:

NRG Middletown, 1866 River Road, Middletown, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	1.7 U	4.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Lead	1.7 U	5.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Selenium	2.0 U	10	2.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Vanadium	11.0		0.51	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Zinc	1.8 B (L)	20	1.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18774

(2) Prep QC Batch: MP25623

RL = Reporting Limit MDL = Method Detection Limit U = Indicates a result < MDL

 $B \,=\, Indicates\; a\; result \,> \,=\, MDL\; but \,<\, RL$

Report of Analysis

Page 1 of 1

Client Sample ID: TW-18 DUP Lab Sample ID:

MC43503-7

AQ - Ground Water

Date Sampled: 12/10/15

Date Received: 12/15/15

Percent Solids: n/a

Project:

Matrix:

NRG Middletown, 1866 River Road, Middletown, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	17U	4.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Lead	1.7 U	5.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Selenium	2.0 U	10	2.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C 1	SW846 3010A ²
Vanadium	11000	10	0.51	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Zinc	1,6 B 🕖	20	1.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18774

(2) Prep QC Batch: MP25623

Report of Analysis

Page 1 of 1

Client Sample ID: TW-17D Lab Sample ID:

MC43503-8

AQ - Ground Water

Date Sampled: 12/10/15 Date Received: 12/15/15

Percent Solids: n/a

Matrix: Project:

NRG Middletown, 1866 River Road, Middletown, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	1.7U	4.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Lead	17U		1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Selenium	50.3	10	2.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Vanadium	298	10	0.51	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Zinc	3.6 B 👢	20	1.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18774

(2) Prep QC Batch: MP25623

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID:

TW-21D MC43503-9

Matrix:

AQ - Ground Water

Date Sampled: 12/10/15

Date Received: 12/15/15 Percent Solids: n/a

Project:

NRG Middletown, 1866 River Road, Middletown, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	1.7 U	4.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Lead	1.7 U	5.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Selenium	35.9	10	2.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Vanadium	6.8 B J	10	0.51	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Zinc	3.0 B 👢	20	1.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18774

(2) Prep QC Batch: MP25623

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

 $\mathbf{B}\mathbf{y}$

MR

Page 1 of 1

Lab Sample ID:

Client Sample ID: AOC5-MW1

MC43503-10

File ID

I99580.D

1070 ml

Date Sampled: 12/10/15

Matrix:

AQ - Ground Water SW846 8270D BY SIM SW846 3510C Date Received:

12/15/15

Percent Solids: n/a

Method: Project:

NRG Middletown, 1866 River Road, Middletown, CT

Run #1

DF Analyzed 1 12/24/15

Prep Date 12/16/15

Prep Batch OP45788

Analytical Batch MSI3723

Run #2

Initial Volume Final Volume

Run #1

2.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q	
83-32-9	Acenaphthene	NĐ	0.19	0.014	ug/l		
208-96-8	Acenaphthylene	ND	0.19	0.016	ug/l		
120-12-7	Anthracene	ND	0.19	0.018	ug/l		
56-55-3	Benzo(a)anthracene	ND	0.094	0.044	ug/l		
50-32-8	Benzo(a)pyrene	ND	0.19	0.029	ug/l		
205-99-2	Benzo(b)fluoranthene	ND	0.094	0.036	ug/l		
191-24-2	Benzo(g,h,i)perylene	ND	0.19	0.023	ug/l		
207-08-9	Benzo(k)fluoranthene	ND	0.19	0.019	ug/l		
218-01-9	Chrysene	ND	0.19	0.025	ug/l		
53-70-3	Dibenzo(a,h)anthracene	ND	0.19	0.028	ug/l		
206-44-0	Fluoranthene	ND	0.19	0.014	ug/l		
86-73-7	Fluorene	ND	0.19	0.028	ug/l		
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.19	0.038	ug/l		
91-57-6	2-Methylnaphthalene	ND	3.8	0.021	ug/l		
91-20-3	Naphthalene	0.14	3.8	0.015	ug/l	JВ	U
85-01-8	Phenanthrene	ND	0.094	0.020	ug/l		
129-00-0	Pyrene	ND	0.19	0.016	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
4165-60-0	Nitrobenzene-d5	0% a		26-1	21%		
321-60-8	2-Fluorobiphenyl	69%	A070	28-1	07%		
1718-51-0	Terphenyl-d14	0% a	70 / 10 / 10 / 10 / 10 / 10 / 10 / 10 /	29-1	29%		

(a) Surrogate standard not added. EPH extract analyzed.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Lab Sample ID:

Client Sample ID: AOC2-SB1-MW1 MC43503-11

AQ - Ground Water

Date Sampled: 12/10/15

Date Received: 12/15/15 Percent Solids: n/a

Project:

Matrix:

NRG Middletown, 1866 River Road, Middletown, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	1.7 U	4.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Lead	1.7 U	5.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C 1	SW846 3010A ²
Selenium	2.0 U		2.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Vanadium	0.51 U	10	0.51	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Zinc	1.6 B 🚜	20	1.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18774

(2) Prep QC Batch: MP25623

Client Sample ID: AOC9-SB1-MW1 Lab Sample ID: MC43503-12

Matrix: AQ - Ground Water

Date Sampled: 12/11/15

Date Received: 12/15/15

Percent Solids: n/a

Project:

NRG Middletown, 1866 River Road, Middletown, CT

Total Metals Analysis

Analyte Result RL MDL Units DF Prep Analyzed By Method Prep Method

Arsenic 1.7 B T 4.0 1.7 ug/l 1 12/18/15 12/21/15 EC SW846 6010C 1 SW846 3010A 2

(1) Instrument QC Batch: MA18774(2) Prep QC Batch: MP25623

RL = Reporting Limit MDL = Method Detection Limit U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

Date Sampled: 12/11/15

Date Received: 12/15/15

Report of Analysis

Client Sample ID: AOC9-SB1-MW1 Lab Sample ID: MC43503-12

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C

Percent Solids: n/a

Method: NRG Middletown, 1866 River Road, Middletown, CT Project:

File ID DF Ву Prep Date Prep Batch Analytical Batch Analyzed OP45788 MSI3723 I99581.D 12/24/15 MR 12/16/15 Run #1 1

Run #2

Matrix:

Final Volume Initial Volume 2.0 ml 1070 ml

Run #1

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q	
83-32-9	Acenaphthene	ND	0.19	0.014	ug/l		
208-96-8	Acenaphthylene	ND	0.19	0.016	ug/l		
120-12-7	Anthracene	ND	0.19	0.018	ug/l		
56-55-3	Benzo(a)anthracene	ND	0.094	0.044	ug/l		
50-32-8	Benzo(a)pyrene	ND	0.19	0.029	ug/l		
205-99-2	Benzo(b)fluoranthene	ND	0.094	0.036	ug/l		
191-24-2	Benzo(g,h,i)perylene	ND	0.19	0.023	ug/l		
207-08-9	Benzo(k)fluoranthene	ND	0.19	0.019	ug/l		
218-01-9	Chrysene	ND	0.19	0.025	ug/l		
53-70-3	Dibenzo(a,h)anthracene	ND	0.19	0.028	ug/l		
206-44-0	Fluoranthene	ND	0.19	0.014	ug/l		
86-73-7	Fluorene	ND	0.19	0.028	ug/l		
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.19	0.038	ug/l		
91-57-6	2-Methylnaphthalene	ND	3.8	0.021	ug/l		_
91-20-3	Naphthalene	0.13	3.8	0.015	ug/l	JВ	V.
85-01-8	Phenanthrene	ND	0.094	0.020	ug/l		
129-00-0	Pyrene	ND	0.19	0.016	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
4165-60-0	Nitrobenzene-d5	0% a	1000 1000	26-1	21%		
321-60-8	2-Fluorobiphenyl	68%		28-1	07%		
1718-51-0	Terphenyl-d14	0% a	196' 6'- 796' - 6'- 6'- 6'- 6'- 6'- 6'- 6'-	29-1	29%		

(a) Surrogate standard not added. EPH extract analyzed.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

MR

Client Sample ID: AOC8-SB1-MW1 Lab Sample ID: MC43503-13

File ID

I99582.D

AQ - Ground Water

DF

1

Date Sampled: 12/11/15 Date Received: 12/15/15

Matrix: Method:

SW846 8270D BY SIM SW846 3510C

Percent Solids: n/a

Project:

NRG Middletown, 1866 River Road, Middletown, CT

Analyzed

12/24/15

Prep Date Prep Batch Analytical Batch OP45788 12/16/15 MSI3723

Run #1 Run #2

Final Volume Initial Volume $1060 \, \mathrm{ml}$ 2.0 ml Run #1

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q	
83-32-9	Acenaphthene	16	0.19	0.014	ug/l		
208-96-8	Acenaphthylene	0.27	0.19	0.016	ug/l		
120-12-7	Anthracene	ND	0.19	0.018	ug/l		
56-55-3	Benzo(a)anthracene	ND	0.094	0.045	ug/l		
50-32-8	Benzo(a)pyrene	ND	0.19	0.029	ug/l		
205-99-2	Benzo(b)fluoranthene	ND	0.094	0.036	ug/l		
191-24-2	Benzo(g,h,i)perylene	ND	0.19	0.024	ug/l		
207-08-9	Benzo(k)fluoranthene	ND	0.19	0.019	ug/l		
218-01-9	Chrysene	ND	0.19	0.025	ug/l		
53-70-3	Dibenzo(a,h)anthracene	ND	0.19	0.028	ug/l		,
206-44-0	Fluoranthene	0.029	0.19	0.014	ug/l	J	1
86-73-7	Fluorene	3.2	0.19	0.028	ug/l		*
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.19	0.038	ug/l		
91-57-6	2-Methylnaphthalene	ND	3.8	0.021	ug/l		
91-20-3	Naphthalene	0.42	3.8	0.015	ug/l	JВ	L
85-01-8	Phenanthrene	1.2	0.094	0.020	ug/l		
129-00-0	Pyrene	0.078	0.19	0.016	ug/l	J	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
4165-60-0	Nitrobenzene-d5	0% a		26-12	21%		
321-60-8	2-Fluorobiphenyl	65%		28-10)7%		
1718-51-0	Terphenyl-d14	0% a		29-12	29%		

(a) Surrogate standard not added. EPH extract analyzed.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: Lab Sample ID:

AOC8-SB1-MW1

MC43503-13 AQ - Ground Water Date Sampled: 12/11/15

Date Received: 12/15/15

Matrix: Method:

MADEP EPH REV 1.1 SW846 3510C

Project:

Percent Solids: n/a

NRG Middletown, 1866 River Road, Middletown, CT

Prep Date Prep Batch Analytical Batch DF By File ID Analyzed 12/22/15 TA 12/16/15 OP45787 GDE709 Run #1 DE12784.D 1

Run #2

Final Volume Initial Volume

Run #1

 $2.0 \, \mathrm{ml}$

Run #2

Extractable TPHC Ranges

1060 ml

CAS No.	Compound	Result	RL	MDL	Units	Q	
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	270 80.7 ND 256	94 94	66 66 66	ug/l ug/l ug/l ug/l	J	, and performance of the second secon
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	60% 79% 69% 82%		40-14 40-14 40-14	40% 40%		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

MR

Prep Date

12/16/15

Page 1 of 1

Client Sample ID: AOC8-SB1-MW1 DUP

Lab Sample ID:

MC43503-14

Date Sampled: 12/11/15

Matrix:

AQ - Ground Water

DF

1

Date Received: 12/15/15

Method:

SW846 8270D BY SIM SW846 3510C

Percent Solids: n/a

Project:

NRG Middletown, 1866 River Road, Middletown, CT

Analyzed

12/24/15

Prep Batch

Analytical Batch

Run #1 Run #2

OP45788

MSI3723

File ID

I99583.D

Initial Volume Final Volume

1070 ml

2.0 ml

Run #1 Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q	
83~32-9	Acenaphthene	14	0.19	0.014	ug/l		
208-96-8	Acenaphthylene	0.23	0.19	0.016	ug/l		
120-12-7	Anthracene	ND	0.19	0.018	ug/l		
56-55-3	Benzo(a)anthracene	ND	0.094	0.044	ug/l		
50-32-8	Benzo(a) pyrene	ND	0.19	0.029	ug/l		
205-99-2	Benzo(b)fluoranthene	ND	0.094	0.036	ug/l		
191-24-2	Benzo(g,h,i)perylene	ND	0.19	0.023	ug/l		
207-08-9	Benzo(k)fluoranthene	ND	0.19	0.019	ug/I		
218-01-9	Chrysene	ND	0.19	0.025	ug/l		
53-70-3	Dibenzo(a,h)anthracene	ND	0.19	0.028	ug/l		
206-44-0	Fluoranthene	ND	0.19	0.014	ug/I		
86-73-7	Fluorene	3,4	0.19	0.028	ug/I		
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.19	0.038	ug/l		
91-57-6	2-Methylnaphthalene	ND	3.8	0.021	ug/l		
91-20-3	Naphthalene	0.30	3.8	0.015	ug/l	JΒ	V.
85-01-8	Phenanthrene	1.5	0.094	0.020	ug/l		
129-00-0	Pyrene	0.057	0.19	0.016	ug/l	J	7
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
4165-60-0	Nitrobenzene-d5	0% a		26-1	21%		
321-60-8	2-Fluorobiphenyl	65%	7.00 6.10 6.10 6.10 6.10 6.10 6.10 6.10 6	28-1	07%		
1718-51-0	Terphenyl-d14	0% a	7 6 3 7 6 7 7 6 8 6 6 7 6 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	29-1	29%		

(a) Surrogate standard not added. EPH extract analyzed.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Ву

TA

Prep Date

 $12/\bar{1}6/15$

Client Sample ID: AOC8-SB1-MW1 DUP

Lab Sample ID:

MC43503-14

Date Sampled: 12/11/15

Matrix:

AQ - Ground Water

DF

1

Date Received:

12/15/15

Method:

MADEP EPH REV 1.1 SW846 3510C

Percent Solids: n/a

OP45787

Project:

NRG Middletown, 1866 River Road, Middletown, CT

Analyzed

12/22/15

Prep Batch Analytical Batch

GDE709

Run #1 Run #2

File ID

DE12785.D

Initial Volume 1070 ml

Final Volume 2.0 ml

Run #1 Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q	
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	214 69.1 ND 205	94 94 94	66 66 66 66	ug/l ug/l ug/l ug/l	J	T
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	55% 76% 74% 79%		40-1 40-1 40-1 40-1	40% 40%		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

MR

Prep Date

12/16/15

Page 1 of 1

Client Sample ID: AOC9-SB2-MW2 Lab Sample ID:

MC43503-15

Date Sampled: 12/11/15

Matrix:

AQ - Ground Water

DF

1

Date Received: 12/15/15

Method:

SW846 8270D BY SIM SW846 3510C

Percent Solids: n/a

Project:

NRG Middletown, 1866 River Road, Middletown, CT

Analyzed

12/24/15

Prep Batch Analytical Batch

Run #1 Run #2

I99584.D

File ID

OP45788

MSI3723

1070 ml

Initial Volume Final Volume

Run #1 Run #2 2.0 ml

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q	
83-32-9	Acenaphthene	0.16	0.19	0.014	ug/l	J	1
208-96-8	Acenaphthylene	ND	0.19	0.016	ug/l		
120-12-7	Anthracene	0.043	0.19	0.018	ug/l	J	J
56-55-3	Benzo(a)anthracene	ND	0.094	0.044	ug/l		-
50-32-8	Benzo(a)pyrene	ND	0.19	0.029	ug/l		
205-99-2	Benzo(b)fluoranthene	ND	0.094	0.036	ug/l		
191-24-2	Benzo(g,h,i)perylene	ND	0.19	0.023	ug/l		
207-08-9	Benzo(k)fluoranthene	ND	0.19	0.019	ug/l		
218-01-9	Chrysene	ND	0.19	0.025	ug/l		
53-70-3	Dibenzo(a,h)anthracene	ND	0.19	0.028	ug/l		, esc.
206-44-0	Fluoranthene	0.036	0.19	0.014	ug/l	J	
86-73-7	Fluorene	0.082	0.19	0.028	ug/l	J	T
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.19	0.038	ug/l		_
91-57-6	2-Methylnaphthalene	ND	3.8	0.021	ug/l		
91-20-3	Naphthalene	0.14	3.8	0.015	ug/l	JΒ	u
85-01-8	Phenanthrene	ND	0.094	0.020	ug/l		
129-00-0	Pyrene	0.033	0.19	0.016	ug/l	J	1
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
4165-60-0	Nitrobenzene-d5	0% a		26-1	21%		
321-60-8	2-Fluorobiphenyl	71%		28-1	07%		
1718-51-0	Terphenyl-d14	0% a		29-1	29%		

(a) Surrogate standard not added. EPH extract analyzed.

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

12/30/15

Technical Report for

CB&I

NRG Middletown, 1866 River Road, Middletown, CT

1009634028-00121110

Accutest Job Number: MC43503

Sampling Dates: 12/10/15 - 12/11/15

Report to:

CB&I

150 Royall Street

Cantonton, MA 02021

andrew.walker@cbi.com; catherine.joe@cbi.com

ATTN: Andrew Walker

Total number of pages in report: 62

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

applicable.

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) WI (399080220) DoD ELAP (L-A-B L2235)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Client Service contact: Frank DAgostino 508-481-6200

Sections:

Table of Contents

-1-

Section 1: Sample Summary	
Section 2: Case Narrative/Conformance Summary	5
Section 3: Summary of Hits	6
Section 4: Sample Results	9
4.1: MC43503-1: TW-10	10
4.2: MC43503-2: TW-14	11
4.3: MC43503-3: EB-1	12
4.4: MC43503-4: AOC1-MW2	15
4.5: MC43503-5: AOC1-MW1R	16
4.6: MC43503-6: TW-18	17
4.7: MC43503-7: TW-18 DUP	18
4.8: MC43503-8: TW-17D	19
4.9: MC43503-9: TW-21D	20
4.10: MC43503-10: AOC5-MW1	21
4.11: MC43503-11: AOC2-SB1-MW1	23
4.12: MC43503-12: AOC9-SB1-MW1	24
4.13: MC43503-13: AOC8-SB1-MW1	27
4.14: MC43503-14: AOC8-SB1-MW1 DUP	29
4.15: MC43503-15: AOC9-SB2-MW2	31
Section 5: Misc. Forms	34
5.1: Chain of Custody	35
5.2: RCP Form	41
5.3: Sample Tracking Chronicle	42
5.4: QC Evaluation: CT RCP Limits	
Section 6: GC/MS Semi-volatiles - QC Data Summaries	
6.1: Method Blank Summary	47
6.2: Blank Spike/Blank Spike Duplicate Summary	
6.3: Internal Standard Area Summaries	49
6.4: Surrogate Recovery Summaries	51
Section 7: GC Semi-volatiles - QC Data Summaries	52
7.1: Method Blank Summary	53
7.2: Blank Spike/Blank Spike Duplicate Summary	
7.3: Surrogate Recovery Summaries	
Section 8: Metals Analysis - QC Data Summaries	
8.1: Prep QC MP25623: As,Pb,Se,V,Zn	57

Sample Summary

CB&I

Job No: MC43503

NRG Middletown, 1866 River Road, Middletown, CT Project No: 1009634028-00121110

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
MC43503-1	12/10/15	08:15 DL	12/15/15	AQ	Ground Water	TW-10
MC43503-2	12/10/15	09:05 DL	12/15/15	AQ	Ground Water	TW-14
MC43503-3	12/10/15	07:40 DL	12/15/15	AQ	Equipment Blank	EB-1
MC43503-4	12/10/15	09:45 DL	12/15/15	AQ	Ground Water	AOC1-MW2
MC43503-5	12/10/15	10:30 DL	12/15/15	AQ	Ground Water	AOC1-MW1R
MC43503-6	12/10/15	11:20 DL	12/15/15	AQ	Ground Water	TW-18
MC43503-7	12/10/15	11:20 DL	12/15/15	AQ	Ground Water	TW-18 DUP
MC43503-8	12/10/15	12:25 DL	12/15/15	AQ	Ground Water	TW-17D
MC43503-9	12/10/15	13:20 DL	12/15/15	AQ	Ground Water	TW-21D
MC43503-10	12/10/15	14:05 DL	12/15/15	AQ	Ground Water	AOC5-MW1
MC43503-11	12/10/15	15:00 DL	12/15/15	AQ	Ground Water	AOC2-SB1-MW1
MC43503-12	12/11/15	08:10 DL	12/15/15	AQ	Ground Water	AOC9-SB1-MW1
MC43503-13	12/11/15	09:30 DL	12/15/15	AQ	Ground Water	AOC8-SB1-MW1

Sample Summary (continued)

CB&I

Job No: MC43503

NRG Middletown, 1866 River Road, Middletown, CT Project No: 1009634028-00121110

Sample	Sample Collected		Matrix			Client
Number	Date	Time By	Received	Code	Type	Sample ID
MC43503-14	12/11/15	09:30 DL	12/15/15	AQ	Ground Water	AOC8-SB1-MW1 DUP
MC43503-15	12/11/15	10:45 DL	12/15/15	AQ	Ground Water	AOC9-SB2-MW2

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: CB&I Job No MC43503

Site: NRG Middletown, 1866 River Road, Middletown, CT Report Date 12/30/2015 9:56:33 AM

15 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were collected on between 12/10/2015 and 12/11/2015 and were received at Accutest on 12/15/2015 properly preserved, at 1 Deg. C and intact. These Samples received an Accutest job number of MC43503. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Extractables by GCMS By Method SW846 8270D BY SIM

Matrix: AO Batch ID: OP45788

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- PAH Sim requested.
- Sample(s) MC43503-10, MC43503-12, MC43503-13, MC43503-14, MC43503-15, MC43503-3 have compound(s) reported with a "B" qualifier, indicating analyte is found in the associated method blank.
- MC43503-10, 12, 13, 14, 15, 3, OP45788-BS/BSD/MB have Nitrobenzene-d5, Terphenyl-d14 outside control limits. Surrogate standard not added. EPH extract analyzed.
- Quadratic regression is employed for initial calibration standard MSI3694-ICC3694 for Benzo[a]anthracene, Benzo[b]fluoranthene, Benzo[k]fluoranthene, Benzo[a]pyrene, Indeno[1,2,3-cd]pyrene, Dibenz[a,h]anthracene, Benzo[g,h,i]perylene.

Extractables by GC By Method MADEP EPH REV 1.1

Matrix: AQ Batch ID: OP45787

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Only ranges requested.

Metals By Method SW846 6010C

Matrix: AQ Batch ID: MP25623

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) MC43534-8SDL were used as the QC samples for metals.
- Only selected metals requested.
- RPD(s) for Serial Dilution for Lead are outside control limits for sample MP25623-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>

The Accutest Laboratories of New England certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NE, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report(MC43503).

Summary of Hits Job Number: MC43503

CB&I Account:

Project: NRG Middletown, 1866 River Road, Middletown, CT

Collected: 12/10/15 thru 12/11/15

T 1 0 1 75	ar ta ta	D 1//				
Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
MC43503-1	TW-10					
Vanadium Zinc		5.0 B 5.5 B	10 20	0.51 1.0	ug/l ug/l	SW846 6010C SW846 6010C
MC43503-2	TW-14					
Vanadium Zinc		2.2 B 2.4 B	10 20	0.51 1.0	ug/l ug/l	SW846 6010C SW846 6010C
MC43503-3	EB-1					
Naphthalene Zinc		0.17 JB 1.5 B	3.8 20	0.015 1.0	ug/l ug/l	SW846 8270D BY SIM SW846 6010C
MC43503-4	AOC1-MW2					
Arsenic Zinc		1.7 B 1.1 B	4.0 20	1.7 1.0	ug/l ug/l	SW846 6010C SW846 6010C
MC43503-5	AOC1-MW1R					
Selenium Vanadium Zinc		8.0 B 1.3 B 3.8 B	10 10 20	2.0 0.51 1.0	ug/l ug/l ug/l	SW846 6010C SW846 6010C SW846 6010C
MC43503-6	TW-18					
Vanadium Zinc		11.0 1.8 B	10 20	0.51 1.0	ug/l ug/l	SW846 6010C SW846 6010C
MC43503-7	TW-18 DUP					
Vanadium Zinc		11.1 1.6 B	10 20	0.51 1.0	ug/l ug/l	SW846 6010C SW846 6010C
MC43503-8	TW-17D					
Selenium Vanadium Zinc		50.3 298 3.6 B	10 10 20	2.0 0.51 1.0	ug/l ug/l ug/l	SW846 6010C SW846 6010C SW846 6010C
MC43503-9	TW-21D					
Selenium		35.9	10	2.0	ug/l	SW846 6010C

Summary of Hits Job Number: MC43503

CB&I Account:

Project: NRG Middletown, 1866 River Road, Middletown, CT

Collected: 12/10/15 thru 12/11/15

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Vanadium Zinc	6.8 B 3.0 B	10 20	0.51 1.0	ug/l ug/l	SW846 6010C SW846 6010C
MC43503-10 AOC5-MW1					
Naphthalene	0.14 JB	3.8	0.015	ug/l	SW846 8270D BY SIM
MC43503-11 AOC2-SB1-MW1					
Zinc	1.6 B	20	1.0	ug/l	SW846 6010C
MC43503-12 AOC9-SB1-MW1					
Naphthalene Arsenic	0.13 JB 1.7 B	3.8 4.0	0.015 1.7	ug/l ug/l	SW846 8270D BY SIM SW846 6010C
MC43503-13 AOC8-SB1-MW1					
Acenaphthene Acenaphthylene Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C11-C22 Aromatics	1.6 0.27 0.029 J 3.2 0.42 JB 1.2 0.078 J 270 80.7 J 256	0.19 0.19 0.19 0.19 3.8 0.094 0.19 94	0.014 0.016 0.014 0.028 0.015 0.020 0.016 66 66 66	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	SW846 8270D BY SIM SW846 8270D BY SIM MADEP EPH REV 1.1 MADEP EPH REV 1.1
MC43503-14 AOC8-SB1-MW1	DUP				
Acenaphthene Acenaphthylene Fluorene Naphthalene Phenanthrene Pyrene C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C11-C22 Aromatics	1.4 0.23 3.4 0.30 JB 1.5 0.057 J 214 69.1 J 205	0.19 0.19 0.19 3.8 0.094 0.19 94 94	0.014 0.016 0.028 0.015 0.020 0.016 66 66	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	SW846 8270D BY SIM SW846 8270D BY SIM MADEP EPH REV 1.1 MADEP EPH REV 1.1 MADEP EPH REV 1.1
MC43503-15 AOC9-SB2-MW2					
Acenaphthene Anthracene	0.16 J 0.043 J	0.19 0.19	0.014 0.018	ug/l ug/l	SW846 8270D BY SIM SW846 8270D BY SIM

Summary of Hits Job Number: MC43503

CB&I Account:

Project: NRG Middletown, 1866 River Road, Middletown, CT

Collected: 12/10/15 thru 12/11/15

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Fluoranthene	0.036 J	0.19	0.014	ug/l	SW846 8270D BY SIM
Fluorene	0.082 J	0.19	0.028	ug/l	SW846 8270D BY SIM
Naphthalene	0.14 JB	3.8	0.015	ug/l	SW846 8270D BY SIM
Pyrene	0.033 J	0.19	0.016	ug/l	SW846 8270D BY SIM
Arsenic	15.0	4.0	1.7	ug/l	SW846 6010C
Zinc	15.8 B	20	1.0	ug/l	SW846 6010C

Sample Results		
Report of Analysis		

Report of Analysis

Client Sample ID: TW-10

Lab Sample ID: MC43503-1

Matrix: AQ - Ground Water

Date Sampled: 12/10/15

Percent Solids: n/a

Project: NRG Middletown, 1866 River Road, Middletown, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	1.7 U	4.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Lead	1.7 U	5.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Selenium	2.0 U	10	2.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Vanadium	5.0 B	10	0.51	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Zinc	5.5 B	20	1.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18774

(2) Prep QC Batch: MP25623

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL

Report of Analysis

Client Sample ID: TW-14

Lab Sample ID: MC43503-2

Matrix: AQ - Ground Water

Date Sampled: 12/10/15

Date Received: 12/15/15

Percent Solids: n/a

Project: NRG Middletown, 1866 River Road, Middletown, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	1.7 U	4.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Lead	1.7 U	5.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Selenium	2.0 U	10	2.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Vanadium	2.2 B	10	0.51	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Zinc	2.4 B	20	1.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18774

(2) Prep QC Batch: MP25623

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL

Report of Analysis

Client Sample ID: EB-1

 Lab Sample ID:
 MC43503-3
 Date Sampled:
 12/10/15

 Matrix:
 AQ - Equipment Blank
 Date Received:
 12/15/15

 Method:
 SW846 8270D BY SIM
 SW846 3510C
 Percent Solids:
 n/a

Project: NRG Middletown, 1866 River Road, Middletown, CT

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 199579.D 1 12/24/15 MR 12/16/15 OP45788 MSI3723

Run #2

Initial Volume Final Volume

Run #1 1070 ml 2.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	0.19	0.014	ug/l	
208-96-8	Acenaphthylene	ND	0.19	0.016	ug/l	
120-12-7	Anthracene	ND	0.19	0.018	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.094	0.044	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.19	0.029	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.094	0.036	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.19	0.023	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.19	0.019	ug/l	
218-01-9	Chrysene	ND	0.19	0.025	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.19	0.028	ug/l	
206-44-0	Fluoranthene	ND	0.19	0.014	ug/l	
86-73-7	Fluorene	ND	0.19	0.028	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.19	0.038	ug/l	
91-57-6	2-Methylnaphthalene	ND	3.8	0.021	ug/l	
91-20-3	Naphthalene	0.17	3.8	0.015	ug/l	JB
85-01-8	Phenanthrene	ND	0.094	0.020	ug/l	
129-00-0	Pyrene	ND	0.19	0.016	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	un# 2 Limits		
4165-60-0	Nitrobenzene-d5	0% a		26-1	21%	
321-60-8	2-Fluorobiphenyl	67%		28-1	07%	
1718-51-0	Terphenyl-d14	0% a		29-1	29%	

(a) Surrogate standard not added. EPH extract analyzed.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: EB-1

Lab Sample ID:MC43503-3Date Sampled:12/10/15Matrix:AQ - Equipment BlankDate Received:12/15/15Method:MADEP EPH REV 1.1 SW846 3510CPercent Solids:n/a

Project: NRG Middletown, 1866 River Road, Middletown, CT

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1DE12779.D112/22/15TA12/16/15OP45787GDE709

Run #2

Run #1 1070 ml Final Volume 2.0 ml

Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	ND ND ND ND	94 94 94 94	66 66 66	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
84-15-1 321-60-8	o-Terphenyl	46%		40-1	40%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: EB-1

Lab Sample ID: MC43503-3 **Date Sampled:** 12/10/15 Matrix: **Date Received:** 12/15/15 AQ - Equipment Blank Percent Solids: n/a

Project: NRG Middletown, 1866 River Road, Middletown, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	1.7 U	4.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Lead	1.7 U	5.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Selenium	2.0 U	10	2.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Vanadium	0.51 U	10	0.51	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Zinc	1.5 B	20	1.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18774

(2) Prep QC Batch: MP25623

RL = Reporting Limit

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL

U = Indicates a result < MDL

Report of Analysis

Client Sample ID: AOC1-MW2
Lab Sample ID: MC43503-4
Matrix: AQ - Ground Water

Date Sampled: 12/10/15
Date Received: 12/15/15
Percent Solids: n/a

Project: NRG Middletown, 1866 River Road, Middletown, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	1.7 B	4.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Lead	1.7 U	5.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Selenium	2.0 U	10	2.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Vanadium	0.51 U	10	0.51	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Zinc	1.1 B	20	1.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18774

(2) Prep QC Batch: MP25623

RL = Reporting Limit U = Indicates a result < MDL

Report of Analysis

Client Sample ID: AOC1-MW1R

Lab Sample ID: MC43503-5

Matrix: AQ - Ground Water

Date Sampled: 12/10/15

Percent Solids: n/a

Project: NRG Middletown, 1866 River Road, Middletown, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	1.7 U	4.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Lead	1.7 U	5.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Selenium	8.0 B	10	2.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Vanadium	1.3 B	10	0.51	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Zinc	3.8 B	20	1.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18774(2) Prep QC Batch: MP25623

RL = Reporting Limit U = Indicates a result < MDL

Report of Analysis

Client Sample ID: TW-18 Lab Sample ID: MC435

Lab Sample ID:MC43503-6Date Sampled:12/10/15Matrix:AQ - Ground WaterDate Received:12/15/15Percent Solids:n/a

Project: NRG Middletown, 1866 River Road, Middletown, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	1.7 U	4.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Lead	1.7 U	5.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Selenium	2.0 U	10	2.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Vanadium	11.0	10	0.51	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Zinc	1.8 B	20	1.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18774

(2) Prep QC Batch: MP25623

RL = Reporting Limit U = Indicates a result < MDL

Percent Solids: n/a

Report of Analysis

Client Sample ID: TW-18 DUP

Lab Sample ID: MC43503-7

Matrix: AQ - Ground Water

Date Sampled: 12/10/15

Date Received: 12/15/15

Project: NRG Middletown, 1866 River Road, Middletown, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	1.7 U	4.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Lead	1.7 U	5.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Selenium	2.0 U	10	2.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Vanadium	11.1	10	0.51	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Zinc	1.6 B	20	1.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18774

(2) Prep QC Batch: MP25623

RL = Reporting Limit U = Indicates a result < MDL

Report of Analysis

Client Sample ID: TW-17D

Lab Sample ID: MC43503-8

Matrix: AQ - Ground Water

Date Sampled: 12/10/15

Percent Solids: n/a

Project: NRG Middletown, 1866 River Road, Middletown, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	1.7 U	4.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Lead	1.7 U	5.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Selenium	50.3	10	2.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Vanadium	298	10	0.51	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Zinc	3.6 B	20	1.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18774(2) Prep QC Batch: MP25623

RL = Reporting Limit U = Indicates a result < MDL

Report of Analysis

Client Sample ID: TW-21D Lab Sample ID: MC43503-9 **Date Sampled:** 12/10/15 Matrix: **Date Received:** 12/15/15 AQ - Ground Water Percent Solids: n/a

NRG Middletown, 1866 River Road, Middletown, CT **Project:**

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	1.7 U	4.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Lead	1.7 U	5.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Selenium	35.9	10	2.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Vanadium	6.8 B	10	0.51	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Zinc	3.0 B	20	1.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18774

(2) Prep QC Batch: MP25623

RL = Reporting Limit U = Indicates a result < MDL

Report of Analysis

Client Sample ID: AOC5-MW1 Lab Sample ID: MC43503-10 **Date Sampled:** 12/10/15 **Matrix:** AQ - Ground Water **Date Received:** 12/15/15 Method: SW846 8270D BY SIM SW846 3510C Percent Solids: n/a

Project: NRG Middletown, 1866 River Road, Middletown, CT

Analytical Batch File ID DF Analyzed By **Prep Date Prep Batch** Run #1 I99580.D 1 12/24/15 MR 12/16/15 OP45788 MSI3723 Run #2

Final Volume Initial Volume Run #1 1070 ml 2.0 ml Run #2

BN PAH List

Compound	Result	RL	MDL	Units	Q
Acenaphthene	ND	0.19	0.014	ug/l	
-	ND	0.19	0.016	-	
Anthracene	ND	0.19	0.018	-	
Benzo(a)anthracene	ND	0.094	0.044	ug/l	
Benzo(a)pyrene	ND	0.19	0.029	ug/l	
Benzo(b)fluoranthene	ND	0.094	0.036	ug/l	
Benzo(g,h,i)perylene	ND	0.19	0.023	ug/l	
Benzo(k)fluoranthene	ND	0.19	0.019	ug/l	
Chrysene	ND	0.19	0.025	ug/l	
Dibenzo(a,h)anthracene	ND	0.19	0.028	ug/l	
Fluoranthene	ND	0.19	0.014	ug/l	
Fluorene	ND	0.19	0.028	ug/l	
Indeno(1,2,3-cd)pyrene	ND	0.19	0.038	ug/l	
2-Methylnaphthalene	ND	3.8	0.021	ug/l	
Naphthalene	0.14	3.8	0.015	ug/l	JB
Phenanthrene	ND	0.094	0.020	ug/l	
Pyrene	ND	0.19	0.016	ug/l	
Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
Nitrobenzene-d5	0% a		26-12	21%	
2-Fluorobiphenyl	69%				
Terphenyl-d14	0% a		29-12	29%	
	Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Surrogate Recoveries Nitrobenzene-d5 2-Fluorobiphenyl	Acenaphthene Acenaphthylene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene ND Benzo(k)fluoranthene ND Chrysene Dibenzo(a,h)anthracene Fluoranthene ND Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene ND Naphthalene ND ND Surrogate Recoveries Run# 1	Acenaphthene ND 0.19 Acenaphthylene ND 0.19 Anthracene ND 0.19 Benzo(a)anthracene ND 0.094 Benzo(a)pyrene ND 0.19 Benzo(b)fluoranthene ND 0.094 Benzo(g,h,i)perylene ND 0.19 Benzo(k)fluoranthene ND 0.19 Chrysene ND 0.19 Dibenzo(a,h)anthracene ND 0.19 Fluoranthene ND 0.19 Fluorene ND 0.19 Indeno(1,2,3-cd)pyrene ND 0.19 2-Methylnaphthalene ND 3.8 Naphthalene ND 0.094 Pyrene ND 0.19 Surrogate Recoveries Run# 1 Run# 2 Nitrobenzene-d5 0% a 2-Fluorobiphenyl 69%	Acenaphthene ND 0.19 0.014 Acenaphthylene ND 0.19 0.016 Anthracene ND 0.19 0.018 Benzo(a)anthracene ND 0.094 0.044 Benzo(a)pyrene ND 0.19 0.029 Benzo(b)fluoranthene ND 0.19 0.029 Benzo(g,h,i)perylene ND 0.19 0.023 Benzo(k)fluoranthene ND 0.19 0.023 Benzo(k)fluoranthene ND 0.19 0.025 Dibenzo(a,h)anthracene ND 0.19 0.028 Fluoranthene ND 0.19 0.028 Fluoranthene ND 0.19 0.028 Indeno(1,2,3-cd)pyrene ND 0.19 0.038 2-Methylnaphthalene ND 3.8 0.021 Naphthalene ND 0.14 3.8 0.015 Phenanthrene ND 0.094 0.020 Pyrene ND 0.19 0.016 Sur	Acenaphthene ND 0.19 0.014 ug/l Acenaphthylene ND 0.19 0.016 ug/l Anthracene ND 0.19 0.018 ug/l Benzo(a)anthracene ND 0.094 0.044 ug/l Benzo(a)pyrene ND 0.19 0.029 ug/l Benzo(b)fluoranthene ND 0.19 0.029 ug/l Benzo(g,h,i)perylene ND 0.19 0.023 ug/l Benzo(k)fluoranthene ND 0.19 0.023 ug/l Chrysene ND 0.19 0.025 ug/l Dibenzo(a,h)anthracene ND 0.19 0.025 ug/l Fluoranthene ND 0.19 0.028 ug/l Fluorene ND 0.19 0.028 ug/l Indeno(1,2,3-cd)pyrene ND 0.19 0.038 ug/l Naphthalene ND 3.8 0.021 ug/l Naphthalene ND 0.094 0.02

(a) Surrogate standard not added. EPH extract analyzed.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

 Client Sample ID:
 AOC5-MW1

 Lab Sample ID:
 MC43503-10
 Date Sampled:
 12/10/15

 Matrix:
 AQ - Ground Water
 Date Received:
 12/15/15

 Method:
 MADEP EPH REV 1.1 SW846 3510C
 Percent Solids:
 n/a

Project: NRG Middletown, 1866 River Road, Middletown, CT

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch	
Run #1	DE12782.D	1	12/22/15	TA	12/16/15	OP45787	GDE709	
Run #2								

	Initial Volume	Final Volume
Run #1	1070 ml	2.0 ml
Run #2		

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics	ND ND ND	94 94 94	66 66 66	ug/l ug/l ug/l	
	C11-C22 Aromatics	ND	94	66	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
84-15-1	o-Terphenyl	52%		40-1	40%	
321-60-8	2-Fluorobiphenyl	80%		40-1	40%	
3386-33-2	1-Chlorooctadecane	61%		40-1	40%	
580-13-2	2-Bromonaphthalene	81%		40-1	40%	

ND = Not detected MDL = Method Detection Limit J = Incomparison Detection Limit <math>J = Incomparison Detection Limit Detection Detect

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $J = \ Indicates \ an \ estimated \ value$

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: AOC2-SB1-MW1
Lab Sample ID: MC43503-11
Matrix: AQ - Ground Water
Date Sampled: 12/10/15
Percent Solids: n/a

Project: NRG Middletown, 1866 River Road, Middletown, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	1.7 U	4.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Lead	1.7 U	5.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Selenium	2.0 U	10	2.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Vanadium	0.51 U	10	0.51	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Zinc	1.6 B	20	1.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18774

(2) Prep QC Batch: MP25623

RL = Reporting Limit U = Indicates a result < MDL

Report of Analysis

Page 1 of 1

Client Sample ID: AOC9-SB1-MW1 Lab Sample ID: MC43503-12 **Date Sampled:** 12/11/15 **Matrix:** AQ - Ground Water **Date Received:** 12/15/15 Method: SW846 8270D BY SIM SW846 3510C Percent Solids: n/a

Project: NRG Middletown, 1866 River Road, Middletown, CT

Analytical Batch File ID DF Analyzed By **Prep Date Prep Batch** Run #1 I99581.D 1 12/24/15 MR 12/16/15 OP45788 MSI3723 Run #2

Final Volume Initial Volume Run #1 1070 ml 2.0 ml Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	0.19	0.014	ug/l	
208-96-8	Acenaphthylene	ND	0.19	0.016	ug/l	
120-12-7	Anthracene	ND	0.19	0.018	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.094	0.044	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.19	0.029	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.094	0.036	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.19	0.023	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.19	0.019	ug/l	
218-01-9	Chrysene	ND	0.19	0.025	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.19	0.028	ug/l	
206-44-0	Fluoranthene	ND	0.19	0.014	ug/l	
86-73-7	Fluorene	ND	0.19	0.028	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.19	0.038	ug/l	
91-57-6	2-Methylnaphthalene	ND	3.8	0.021	ug/l	
91-20-3	Naphthalene	0.13	3.8	0.015	ug/l	JB
85-01-8	Phenanthrene	ND	0.094	0.020	ug/l	
129-00-0	Pyrene	ND	0.19	0.016	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	0% a		26-1	21%	
321-60-8	2-Fluorobiphenyl	68%		28-1	07%	
1718-51-0	Terphenyl-d14	0% a		29-1	29%	

(a) Surrogate standard not added. EPH extract analyzed.

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

4

Report of Analysis

 Client Sample ID:
 AOC9-SB1-MW1

 Lab Sample ID:
 MC43503-12
 Date Sampled:
 12/11/15

 Matrix:
 AQ - Ground Water
 Date Received:
 12/15/15

 Method:
 MADEP EPH REV 1.1 SW846 3510C
 Percent Solids:
 n/a

Project: NRG Middletown, 1866 River Road, Middletown, CT

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
Run #1	DE12783.D	1	12/22/15	TA	12/16/15	OP45787	GDE709	
Run #2								

	Initial Volume	Final Volume
Run #1	1070 ml	2.0 ml
Run #2		

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	ND ND ND ND	94 94 94 94	66 66 66	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	48% 75% 65% 76%		40-1 40-1 40-1 40-1	40%	

ND = Not detected MDL = Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: AOC9-SB1-MW1

Lab Sample ID: MC43503-12

Matrix: AQ - Ground Water

Date Sampled: 12/11/15

Percent Solids: n/a

Project: NRG Middletown, 1866 River Road, Middletown, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	1.7 B	4.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18774(2) Prep QC Batch: MP25623

RL = Reporting Limit U = Indicates a result < MDL

Report of Analysis

Client Sample ID: AOC8-SB1-MW1 Lab Sample ID: MC43503-13 **Date Sampled:** 12/11/15 **Matrix:** AQ - Ground Water **Date Received:** 12/15/15 Method: SW846 8270D BY SIM SW846 3510C Percent Solids: n/a

Project: NRG Middletown, 1866 River Road, Middletown, CT

Analytical Batch File ID DF Analyzed By **Prep Date Prep Batch** Run #1 I99582.D 1 12/24/15 MR 12/16/15 OP45788 MSI3723 Run #2

Final Volume Initial Volume Run #1 1060 ml 2.0 ml Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
92 22 0	A	1.6	0.10	0.014		
83-32-9	Acenaphthene	1.6	0.19	0.014	ug/l	
208-96-8	Acenaphthylene	0.27	0.19	0.016	ug/l	
120-12-7	Anthracene	ND	0.19	0.018	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.094	0.045	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.19	0.029	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.094	0.036	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.19	0.024	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.19	0.019	ug/l	
218-01-9	Chrysene	ND	0.19	0.025	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.19	0.028	ug/l	
206-44-0	Fluoranthene	0.029	0.19	0.014	ug/l	J
86-73-7	Fluorene	3.2	0.19	0.028	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.19	0.038	ug/l	
91-57-6	2-Methylnaphthalene	ND	3.8	0.021	ug/l	
91-20-3	Naphthalene	0.42	3.8	0.015	ug/l	JB
85-01-8	Phenanthrene	1.2	0.094	0.020	ug/l	
129-00-0	Pyrene	0.078	0.19	0.016	ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
4165-60-0	Nitrobenzene-d5	0% a		26-12	21%	
321-60-8	2-Fluorobiphenyl	65%		28-10)7%	
1718-51-0	Terphenyl-d14	0% a		29-12	29%	

(a) Surrogate standard not added. EPH extract analyzed.

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

 Client Sample ID:
 AOC8-SB1-MW1

 Lab Sample ID:
 MC43503-13
 Date Sampled:
 12/11/15

 Matrix:
 AQ - Ground Water
 Date Received:
 12/15/15

 Method:
 MADEP EPH REV 1.1
 SW846 3510C
 Percent Solids:
 n/a

Project: NRG Middletown, 1866 River Road, Middletown, CT

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	DE12784.D	1	12/22/15	TA	12/16/15	OP45787	GDE709
Run #2							

	Initial Volume	Final Volume
Run #1	1060 ml	2.0 ml
Run #2		

Extractable TPHC Ranges

CAS No.	S No. Compound		RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	270 80.7 ND 256	94 94 94 94	66 66 66	ug/l ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
84-15-1 321-60-8 3386-33-2	o-Terphenyl 2-Fluorobiphenyl	60% 79%		40-1- 40-1-		

ND = Not detected MDL = Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: AOC8-SB1-MW1 DUP

 Lab Sample ID:
 MC43503-14
 Date Sampled:
 12/11/15

 Matrix:
 AQ - Ground Water
 Date Received:
 12/15/15

 Method:
 SW846 8270D BY SIM
 SW846 3510C
 Percent Solids:
 n/a

Project: NRG Middletown, 1866 River Road, Middletown, CT

Analytical Batch File ID DF Analyzed By **Prep Date Prep Batch** Run #1 I99583.D 1 12/24/15 MR 12/16/15 OP45788 MSI3723 Run #2

Run #1 Initial Volume Final Volume 2.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
92.22.0	A1-41	1 4	0.10	0.014	/1	
83-32-9	Acenaphthene	1.4	0.19	0.014	ug/l	
208-96-8	Acenaphthylene	0.23	0.19	0.016	ug/l	
120-12-7	Anthracene	ND	0.19	0.018	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.094	0.044	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.19	0.029	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.094	0.036	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.19	0.023	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.19	0.019	ug/l	
218-01-9	Chrysene	ND	0.19	0.025	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.19	0.028	ug/l	
206-44-0	Fluoranthene	ND	0.19	0.014	ug/l	
86-73-7	Fluorene	3.4	0.19	0.028	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.19	0.038	ug/l	
91-57-6	2-Methylnaphthalene	ND	3.8	0.021	ug/l	
91-20-3	Naphthalene	0.30	3.8	0.015	ug/l	JB
85-01-8	Phenanthrene	1.5	0.094	0.020	ug/l	
129-00-0	Pyrene	0.057	0.19	0.016	ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
4165-60-0	Nitrobenzene-d5	0% a		26-1	21%	
321-60-8	2-Fluorobiphenyl	65%		28-1	07%	
1718-51-0	Terphenyl-d14	0% a		29-1	29%	

(a) Surrogate standard not added. EPH extract analyzed.

ND = Not detected MDL = Method Detection Limit J = Indi

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: AOC8-SB1-MW1 DUP

 Lab Sample ID:
 MC43503-14
 Date Sampled:
 12/11/15

 Matrix:
 AQ - Ground Water
 Date Received:
 12/15/15

 Method:
 MADEP EPH REV 1.1 SW846 3510C
 Percent Solids:
 n/a

Project: NRG Middletown, 1866 River Road, Middletown, CT

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	DE12785.D	1	12/22/15	TA	12/16/15	OP45787	GDE709
Run #2							

	Initial Volume	Final Volume
Run #1	1070 ml	2.0 ml
Run #2		

Extractable TPHC Ranges

CAS No.	AS No. Compound		RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	214 69.1 ND 205	94 94 94 94	66 66 66	ug/l ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

ND = Not detected MDL = Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: AOC9-SB2-MW2 Lab Sample ID: MC43503-15 **Date Sampled:** 12/11/15 **Matrix:** AQ - Ground Water **Date Received:** 12/15/15 Method: SW846 8270D BY SIM SW846 3510C Percent Solids: n/a

Project: NRG Middletown, 1866 River Road, Middletown, CT

Analytical Batch File ID DF Analyzed By **Prep Date Prep Batch** Run #1 I99584.D 1 12/24/15 MR 12/16/15 OP45788 MSI3723 Run #2

Final Volume Initial Volume Run #1 1070 ml 2.0 ml Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	0.16	0.19	0.014	ug/l	J
208-96-8	Acenaphthylene	ND	0.19	0.016	ug/l	
120-12-7	Anthracene	0.043	0.19	0.018	ug/l	J
56-55-3	Benzo(a)anthracene	ND	0.094	0.044	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.19	0.029	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.094	0.036	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.19	0.023	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.19	0.019	ug/l	
218-01-9	Chrysene	ND	0.19	0.025	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.19	0.028	ug/l	
206-44-0	Fluoranthene	0.036	0.19	0.014	ug/l	J
86-73-7	Fluorene	0.082	0.19	0.028	ug/l	J
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.19	0.038	ug/l	
91-57-6	2-Methylnaphthalene	ND	3.8	0.021	ug/l	
91-20-3	Naphthalene	0.14	3.8	0.015	ug/l	JB
85-01-8	Phenanthrene	ND	0.094	0.020	ug/l	
129-00-0	Pyrene	0.033	0.19	0.016	ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	0% a		26-1	21%	
321-60-8	2-Fluorobiphenyl	71%		28-1	07%	
1718-51-0	Terphenyl-d14	0% a		29-1	29%	

(a) Surrogate standard not added. EPH extract analyzed.

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

 Client Sample ID:
 AOC9-SB2-MW2

 Lab Sample ID:
 MC43503-15
 Date Sampled:
 12/11/15

 Matrix:
 AQ - Ground Water
 Date Received:
 12/15/15

 Method:
 MADEP EPH REV 1.1 SW846 3510C
 Percent Solids:
 n/a

Project: NRG Middletown, 1866 River Road, Middletown, CT

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 DE12786.D 1 12/22/15 TA12/16/15 OP45787 **GDE709** Run #2

Run #1 1070 ml 2.0 ml
Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	ND ND ND ND	94 94 94 94	66 66 66	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	55% 72% 60% 74%		40-14 40-14 40-14	40% 40%	

ND = Not detected MDL = Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: AOC9-SB2-MW2

Lab Sample ID: MC43503-15

Matrix: AQ - Ground Water

Date Sampled: 12/11/15

Percent Solids: n/a

Project: NRG Middletown, 1866 River Road, Middletown, CT

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	15.0	4.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Lead	1.7 U	5.0	1.7	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Selenium	2.0 U	10	2.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Vanadium	0.51 U	10	0.51	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²
Zinc	15.8 B	20	1.0	ug/l	1	12/18/15	12/21/15 EC	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18774

(2) Prep QC Batch: MP25623

RL = Reporting Limit U = Indicates a result < MDL

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Chain of Custody
- RCP Form
- Sample Tracking Chronicle
- QC Evaluation: CT RCP Limits

70000						iccutest															- 4		MC	43503
Comp	Client / Reporting Information	Project Name		Pro	ject l	nforma	tion									Reques	ed Ana	ilysis (see T		ODE	(et)		Matrix Codes
CB	&I Environmental		iddletow	-													1	10		le	轻		[D
Street	Address	Street:	IIdalecom	11											>	١.	1	ĺ Ω	D	ha	R		- 1	DW - Drinking Water GW - Ground Water
15	0 Royall Street	L	Road			Billing	Infor	matio	n (If d	iffere	ent fro	om R	eport	to)	٥	Zu)		3	V.	lnaphthal	B	- 1		WW - Water SW - Surface Water
City	State Zip	City:			Co	mpany Na							-		S			1	SIM)	ıap	1			SO - Soil SL- Sludge
Projec	nton, MA 02021	Middl Project#	etown, C	T	816	eet Addres									Ph.			1	4.2		41			SED-Sediment
		10096	34028-00	121110	150	det ribbile:	3.5							- 1	AS			1		EP	爾	ĺ	ı	OI - Oil LIQ - Other Liquid
	ymond.Cadorette@cbi.com Fax#	Client PO#		121110	Cit	ly			SI	ate			Zip		12	¥	0	18	270	-methy	Ø		ļ	AIR - Air SOL - Other Solid
	7-589-6102		948165											ŀ	S	3	Arsenic	0	TT 7	2	14		l	WP - Wipe FB-Field Blank
	ler(s) Name(s) Phone #	Project Manage				ention:	1.1				PO#				Meta	Ø	se	7 7	DEP EPA	60	1		- 1	EB- Equipment Blank RB- Rinse Blank
Da.	niel Leahy 617-212-8276	Andrew	Walker		W	RE.	110	cou	<i>ij</i> Ci		101	Ch	VC	2	Me	9	Ar	18	1	including	N.	,		TB-Trip Blank
				Collection	т	-			'	Vumbe	r of pre	served	Boltles	-	-	4	1-2	10	ž p	'B	1	.	- 1	
Accutes Sample	Field ID / Point of Collection	MEOH/DI Vial #			Sample				T L	HNO3	H2SO4	Water	HO S	aller	ota	3	otal	1	PAH	[2]	1			
-		MECHICA VIBI F	Date	Time	by			f bottles	¥ Ž	Ť	H 2	źă	M M	m	띹		HE.	*	田品	뒤	70	<u>'</u>		LAB USE ONLY
	TW-10		12/10/15	0815	VL	GU	4		Ш	11														
-1_	TW-14		12/10/15	0905		V	`	t		I						f						الم		
-3	EB-1		Blinks	0740	П	14	3 -	2 /	Z.	7	1			П		7			2		4	¥		
-4	ACCI-MW2		12/10/16	0945	11	d	1 000				7		\top	Ħ	i	1			-		- 30	+	+	
-5	ACI-MWIR		12/10/15	1030		$\top \top$	T	Ì		1	\top	П		T	17							+	+	
ماب	TW-18.		12/10/15	1120	П		Т			1	T	П	T	\Box	1							\top	+	
~7	TW-18 DUP		12/10/15	1120		\Box	T	$\dot{1}$	1	7	\top	П	\top	TT	1	1		_	_	_	_	+	+	
-в	7W-17D		12/10/15	1225	П	$\top \top$	T			I	1	\Box	\top	\sqcap		\top					\top	+-	+	18C
-9	TW-21D		12/10/15	1320	П	\prod	Т				T	П	T	П							_	1	+	68
~10	ACC5-MUI ACC2-SBI-MUI		12/10/15	1405		П	-	2	2	M	T	\Box	┪	П	1			-	2		1	+	+	
-11	ACC2-5B1-4NUI		12/10/15	1500				1				П	T		1			-	7		-	\top		
					V				Т	П	T	П		П								1	11	
								Data		rable	Info	rmati	m					Co	mmer	its / Sp	pecial Ins	tructi	ons	
	Turnaround Time (Business days) Std. 10 Business Days	pproved By (Acc	utest PM): / Date:			Commer						_		ategory		QA.	/QC:	CTI	DEEP	RCI				
	Std. 5 Business Days (By Contract only)				님	FULLT1					-		e For	ategory ns	В	Re	port	TOIL	111	to	MDL.	me	et CT	SWPC.
	5 Day RUSH					CT RCP			,		×				(SKe	y Re	fer	to s	site	SDE	ecifi	c 0:	APP.	ļ
•	3 Day EMERGENCY					MA MCP						Oth	er			Em.	ail	GISE	Cey	form	natte	d El	DD &	PDF to:
	2 Day EMERGENCY 1 Day EMERGENCY							nmercia				•					Cat	heri	ne.	Joe@	CBT.	com		PER UB
	rgency & Rush T/A data available VIA Lablink						Сол	mercia	iiB = i	Resul	ts + Q	C Sum	mary			ax 1	eun	W.	119	45	EXON	340	I AS	PERIO
/	7/100/	San	ple Custody mu	st be docume	ented b	elow ea	ch tír									ier deliv	ery.		,					
Reling	pulsyled by Sampler / Date Time:	1500	Received by:	as	k									عل			Date Tirk	1	/ P	ceived By	y: g		á si s	Company of the Compan
Relica	uished by Sangples Date Timps	116:48	Received By:	1/1	1				telinguis								10/1	7/	, J 2			A.E.		
3	12/15	15	3	N.M.	_			4	cennquis 	nec B	y:						Daté Tim	e;	4	coived By	r. [1169	P
Reling	ulshed by: Date fime:		Received By:	-				c	ustody	Seal #		-		Intac		Preserv	ed where				On lo	çe ,	Cooler Te	Carrier San Carrie
			5										ı	□ _{Not i}	ntact			L	160	UN.) e	1.7	00	l

MC43503: Chain of Custody Page 1 of 6

				Œ	
				PAT	

Std. 16 Usesness Chys
Std. 18 Usesness Chys (By Contract only)
Std. 18 Usesness Chys
Std. 19 Usesness Chy
Std. 19 Usesness Chys
Std.

erpency & Rush TIA data available VIA Lables

	ACCUTEST			CHAIN														فتعت			<u></u> ∠c)F <u>2</u> -
VOISSO	LARGRATORIE			Technolog L. 508-48	-6200	FAX	: 508-4						Vest Clook					Acorsol was	der Combrei John F			
	Client / Reporting Information				-	cutest : formati	introtterbia socioni				elikkiyose minime	-	Rai	guested	Anah	nis i i	see T	EST C	DDE sh	COMMONIUM	43	503 Matrix Codes
	r/ny Narise	Project Name			and the second				Carried Control				T				200 200 200 200		71	T	T	CNV - Clerking Water
Ger .	<u>AI Environmental</u> Addess	NRG MI	ddletown				rest residence	a vitor tamentos					(S)			-			H	***		GW - Greens Water WW - Whater
15	O koyall Street Ze	River	Rossá	n		Billing k		on (W c	lilferer	t from	Report	10)	- 46			31	Day or					SW - Surface Worler SIO - Sex
er Car	Sume Zie aton, MA 02021	City.	town, CT		Com	cary Wes	NOT						100 at 1		Contraction of the Contraction o	10	right,	37.6				SE Sharge SECI-Sentences
torner	Contact E-mpil	Projecte			Street	H Address	- 38			*********			# (4) (4) (5)					(S) (m-1)	h			UG - Other Liquid
Ra	ypond.Cadorette@cb1.co	100963 Client POd	4028-001	21110	Cay		- 200	5	Earter		24		**102		0	Q	2	25) 250 468 gr	JA	all and a second	44	ARY - Air SOL - Other Send
	7-589-6102	948163													100		9	ACC.	78		1	WF Webs FB Field Black
	mayamen Phone: niel Leahy 617-212-82)	Project Manager	Walker		Alter	non. 12 Es	11.07	et sin i		O.e	a co	n el	2		Arsenic			100 person	W			EB-Equipment Bank NS Pinse Blank
1286	1	2 AMOUNT	T WELKEL	Collections		Tarabasa T	T		-		and British		T. V	1		N	Es	30	N			7世-77年 副海水
ostacii maide al	Field ID / Point of Collection	MECHICA VISI B	Clate	Torse	Sureend to	Midra	# of borde	Q 9	3	100	NECO PORT	100	Total		Tora			2-38	N			LAB USE ONLY
2	4009-381-MWI		13/11/15	08/0	01.	GW	13	12	Π	TT	TT	П		-	71		2		To be seen	production of the second	-	
3	ANTR-SRI-MW		winks	1930	380		atC) gegatina		П	П	П						State of the leading				T	
14	ACK 8- SK1-ML	$ \swarrow $	12/11/15	0930	1		ster.	90	П								all all			П		
45	1000-5152-1460	2	12/11/15	1045			2000	40	Ш		Ш		$\perp L$			6	21					
	T	his entry co	rected to	read				Ш	Ш				1		1							
		AOC8-SB1-1					_		Ш	Ш					\perp						1_	
	A	Steele 12/1	7/2015	L				Ш	Ш		11	11										
						11		11	11	11		Ц.	1	L		market on			reconstruction and a		4	
						<u> </u>		1	11	Ш	11	11	1		_		-	None and the same of the same				
				named and the second		<u> </u>		Щ	11	11						en de la companya	_				1_	to a manage of the contract of
				***	4	442		-	44	Ш	44		and commercian		necressore.	ani-randois			-		4	
			The same as a second consideration		W.	1.0	L	Delive	Ш	Ш	Ш	LL.	1	LL			1		secui In	1		
	Transcround Time (Business days) Std. 16 Business Days Std. 5 Business Days (Sy Contract only) 5 Day RUSH 3 Day EMERGENCY	Appropriate Sy (Acco	Control PNO: 7 Control Control PNO: 7 Control Control PNO: 7 Control Control Control Control Control Control Control Contro			Comment Comment FULLTI CT RCP MA MCP	: (121 °A" (1 141 °B" (1	.evel 1) .evel 2)			NYASP C SYASP C	met ()	Key	Kepo <u>Kele</u> Emal	ekā. KE: V :	CTD on J set: 2.8:	EEP Lim als Ltm	RCP Its to	MUSE MDL. CITI	.338E	<u>k. 67</u>	

eciai "A" = Reside Cires

Sample Custody must be docume

ted below each time samples charige possession, including course

nquished Hy

MC43503: Chain of Custody Page 2 of 6

delivery

d where and

D minut D Not into

Report metals to MDL. Refer to site specific QAPP Email GISKey formstted EDD & PDF to: Y RAN PAN AS BEARD AS PAR LICE

61

PAGE / OF 2

CC	U	TE	ST
	LAB	0 0 4 7	DRIES

CHAIN OF CUSTODY

Accutest Laboratories of New England
495 Technology Center Wass P. Tright FED-EX Tracking # 495 Technology Center West, Building One TEL. 508-481-6200 FAX: 508-481-7753 MC43503 www.accutest.com Client / Reporting Information
Company Name Project Information Requested Analysis (see TEST CODE cheet) Matrix Codes DW - Drinking Wate CB&I Environmental NRG Middletown GW - Ground Water WW - Water SW - Surface Water SO - Soil (As, Pb, Se, V, 150 Royall Street River Road Billing Information (If different from Report to) SO - Soil
SL- Sludge
SED-Sediment
OI - Oil
LIQ - Other Liquid
AIR - Air
SOL - Other Solid
WP - Wipe
FB-Field Blank
EB- Equipment Blan
RB- Rinse Blank
TB-Trip Blank Canton, MA 02021 Middletown, CT 1009634028-00121110 Raymond.Cadorette@cbi.com Arsenic 948165 617-589-6102 by EPA ETH (MADEP PAH by EPA including NRE ACCOUNT PRICING Daniel Leahy 617-212-8276 Andrew Walker Total Field ID / Point of Collection LAB USE ONLY DL 12/10/15 0815 GU TW-10 12/10/15 0905 -2 TW-14 EB-1 12/10/15 0740 ADG-MW2 -4 12/10/15 0945 -5 ACCI-MWIR 12/10/15/1030 مار 12/10/15 11/20 TW-18 7 12/10/15 1120 DUP TW-18 -B 12/10/15/225 18C 7W-17D TW-21D -9 12/10/15 1320 6B 40 ACCS-MINI 12/10/15/1405 -11 AOC 2- SB1- WWI 2/10/15 1500 Data Deliverable Information QA/QC: CTDEEP RCP Turnaround Time (Business days) Approved By (Acculest PM): / Date: Commercial "A" (Level 1) NYASP Category A Commercial "B" (Level 2)
FULLT1 (Level 3+4) NYASP Category B Std. 10 Business Days Detection limits must meet CT SWPC. Std. 5 Business Days (By Contract only) Report metals to MDL.
Refer to site specific OAPP CT RCP EDD Format GISKey 5 Day RUSH Email GISKey formatted EDD & PDF to: Other_ 3 Day EMERGENCY Catherine Joe@CBI.com. Commercial "A" ≃ Results Only 2 Day EMERGENCY Commercial "B" = Results + QC Summary 1 Day EMERGENCY Sample Custody must be documented below each time samples change possession, including co ergency & Rush T/A data available VIA Lablink Sazso a NA

> MC43503: Chain of Custody Page 3 of 6

On Ice 1.0C Cooler Temp.

A	\subset	\Box	L	j	I	E	8	T.
			, ,				0.0	

CHAIN OF CUSTODY

Accutest Laboratories of New England 495 Technology Center West, Building One TEL. 508-481-6200 FAX: 508-481-7753 www.accutest.com

	PAGE	<u>2</u> 0F	2
18	lottle Order Control #	,	

		I E.	L. 308-481- WV		cutest.		01-//	33				Accutes	il Quote #				Accute	si Job #		W((43503
Client / Reporting Information			Proj	ect In	formati	on							Regi	iested An	alysis			CODE at	heet)		Matrix Codes
Company Name	Project Name			***************************************		-	-								T	+ PAH	3		NO		
CB&I Environmental	NRG Mi	dd1etown		100000		NOTO CONTO CONTO		-		1(0117)1(117)			e,			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3		Ø	- 1	DW - Drinking Water GW - Ground Water
Street Address	Street:	n 1		22		ACCURAGE AND ADDRESS OF THE PARTY OF THE PAR				Principal Control			Ñ		000	PAH	4	1	4		WW · Water SW · Surface Water
150 Royall Street City State Zip	River	Koad		Con	Billing Ir	uformatic	an (If d	iiffere	nt from	n Repe	ort to)		Pb,	.	8	+ 6	i i	1	4		SO - Soil
Canton, MA 02021	1	town, CT		1	-purity reason	•							Zn	- 1	B		ne h	1	1 1	l i	SL- Sludge SED-Sediment
Project Contact E-mail	Project#	LOWII, GI		Stre	et Address								ا شا		1	183	H E	16]		OI - Oil
Raymond.Cadorette@cbi.com	100963	4028-001	21110										₹ ₽		1	erthod (SIM)	ha		et l		LIQ - Other Liquid AIR - Air
Phone # Fax #	Client PO#			City	,		S	State		Zi	ip		ω, /	12	, core				1	1	SOL - Other Solid WP - Wipe
617-589-6102	948165] /	Metal:	Arsenic	5		3 6	1 1	4	Ī	FB-Field Blank
Sampler(s) Name(s) Phone #	Project Manager			1 '	ntion:				PO#	_			12t	S	1 3	3.36	12	1	1		EB- Equipment Blank RB- Rinse Blank
Daniel Leahy 617-212-8276	Andrew	Walker			V.P.6	100						- 1	Z 20	- F	10	√ 40	15	1	4	ŀ	TB-Trip Blank
			Collection	·	4		-	Number					127	14	17		## F		\$	Ì	
				Sample			;	[g]	8 4	i kete	ENCORE Bisutfate		Total	Tota1	3] ĕ		£		
Sample # Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	by	Matrix	# of bottle	되고	頁	ž Š	io A	Bis ER		E CO	Ĭ	*		24 24		N.		LAB USE ONLY
+12 ACC9-SB/- MWI		12/11/15	08/0	DL			2	1		П	T			1	T	2					
-13 AN 8 - SPI-MINI	-	12/1/16	1930	1	+	2	13	11	\top	\Box	1				1	2					
-13 ACC8 - SBI-MWI -14 ACC8 - SBI-MW -15 ACG-SB2-MW	7	12/11/15	20120	+	++	2	1	+	+	+	++		\vdash	-	+-	2		++	-+	_	oue.
TY AOC8- 5/31-100		13/1/12	09.50	\vdash	++	400	9	+++	+-	++	++	 		+-	+	2	₩	+-+	-+		1-4-
-15 Acrg-5132-MWS	2	12/11/15	1045	Ш	┷	3	4	Щ		$\perp \perp$	$\perp \! \! \! \! \! \! \! \! \perp \! \! \! \! \! \! \! \! \! \!$					\triangle					
														ļ		ł					
					+1		\top	\top	\top	m					T						
				\vdash	++	+	++	++	+	+	+				+	-	+	+	\neg	-	
				\vdash	+		+	+		++	++	 	\vdash		+-	-	₩	-			
								\bot		$\perp \perp$	$\perp \perp$				Т.	1	丄	$\perp \perp$	_		
						i								ļ			1			1	
				\Box			\top	\Box		\sqcap	\Box				T	1	П				
		 		+	++	} 	++	++		++	++-	\vdash	\vdash	+	+-	+-	+	\vdash	-		
				1	4	1	4-+	+	+	₩	+	\vdash				+	—		\rightarrow		
				Y	\ <u>\</u>	<u> </u>	$\perp \perp$	Ш		Ш							<u> </u>				
							a Deliv		Infor		-			QA/QC				Special	Instru	ctions	
Turnaround Time (Business days)	Approved By (Acc	utest PM); / Date:				ciał "A" (SP Catego								at m	oot C	T SWPC.
Std. 10 Business Days						cial "B" ({ Level 34		,			SP Catego e Forms	ory B		Repor						EEL U	I DWIC.
Std. 5 Business Days (By Contract only) 5 Day RUSH	***************************************				CTRCP		r++)		108] State	Format (GISK	Cey							OAPP.	
3 Day EMERGENCY	***************************************				MAMCP				[er			Email	GIS	Kev	for	matt	ed	EDD &	PDF to:
2 Day EMERGENCY						Commer	rcial "A"	= Resu	ilts Only	y			- (Car	ther	rine.	Toe	achi	i.co	m.	
1 Day EMERGENCY						Commer	rcial "B"	= Resu	ilts + Q	C Sumr	mary		×	RUN	PAT	4 AS	Ex	STRAC	27/	95 PE	RUGOR
Emergency & Rush T/A data available VIA Lablink				ببا													The second	media wasan			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		nple Custody mu	ist be docum	ented	below ea	ch time s	sample	s chai	nge po	ossess	sion, inc	luding	COULIE	Date	Fime:	\mathcal{L}	Receive	ad By:			7
Relinquisted by Sampler:	nlik	1	Jas	20	\nearrow		2			sa	216	1		10	IJ,	5//J	2	,.	N	47/.	
Relinquished by Sampler: Date Tin		Received By:	West	7			Relinq	uished l	Ву:					Date '	lime:	/	Receive	ad By:			
Relinquished by: Date Tin	3/13	Received By:	1-6	-			Custon	dy Seal i	#			Intact	;	reserved wh	ere appli	cable	14		On Ice	Cool	ler Temp.
retailphaned by:												Not intac	nt			FIL	barr	11	0	1.00	0

MC43503: Chain of Custody Page 4 of 6

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: MC43	503	Client	t: CBI			Immediate Client Ser	vices Actio	n Require	d: No
Date / Time Received: 12/15/	2015 4:4	8:00 PM	Deliver	y Metho	od:	Accutest Courier			
Project: NRG MIDDLETOWN	NRG MIDDLETOWN No. Coolers: 1 Airbill #'s:		1 Airbill #'s:						
1. Custody Seals Present:				✓		Sample labels present on bottles:	<u>ү</u> У	or N	
Cooler Temperature	Y or	N				3. Sample container label / COC agree:		\checkmark	
Temp criteria achieved: Cooler temp verification:	✓					·	<u>Y</u>	or N	
Cooler media:	Ice (Bag)	_			'	V		
Quality Control Preservation	<u>Y</u>	<u>N</u>	N/A				✓	Intact	
1. Trip Blank present / cooler:						Sample Integrity - Instructions	Υ_	N	N/A
2. Trip Blank listed on COC:	Ш					1. Analysis requested is clear:	~		
3. Samples preserved properly:	✓					Bottles received for unspecified tests		✓	
4. VOCs headspace free:			\checkmark			,	✓		
_						Compositing instructions clear:			✓
Comments						5. Filtering instructions clear:			✓
Accutest Laboratories V:508.481.6200			4		logy Cente	er West, Bldg One 1.7753			oorough, MA /accutest.com

MC43503: Chain of Custody Page 5 of 6

Sample Receipt Summary - Problem Resolution

Accutest Job Number: MC43503

CSR: Frank D'Agostino Response Date: 12/17/2015

Response: See the revised coc

 Accutest Laboratories
 495 Technology Center West, Bldg One
 Marlborough, MA

 V:508.481.6200
 F: 508.481.7753
 www/accutest.com

MC43503: Chain of Custody Page 6 of 6

5.2

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Laboratory Name: Accutest New England Client: CB&I NRG Middletown, 1866 River Road, **Project Location: Project Number:**

Sampling Date(s): 12/10/2015

Laboratory Sample ID(s): MC43503-1, MC43503-2, MC43503-3, MC43503-4, MC43503-5, MC43503-6, MC43503-

7, MC43503-8, MC43503-9, MC43503-10, MC43503-11, MC43503-12, MC43503-13,

1009634022-02

MC43503-14, MC43503-15

MADEP EPH REV 1.1, SW846 6010C, SW846 8270D BY SIM

Middletown, CT

Methods:	MADEP EPH REV 1.1, SW846 6010C, SW846 8270D BY SIM		
1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol documents)?	Yes 🔽	No 🗖
1A	Where all the method specified preservation and holding time requirements met?	Yes 🗹	No 🔲
1B	VPH and EPH mehods only: Was the VPH or EPH method conducted without significant modifications (See section 11.3 of respective methods)	Yes 🗹	No 🗆
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	Yes 🔽	No 🗖
3	Were samples received at an appropriate temperature (<6° C)?	Yes 🔽	No 🗆
4	Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved?	Yes 🔽	No 🗖
5	a) Were reporting limits specified or referenced on the chain-of-custody?	Yes 🗹	No 🗆
	b) Were these reporting limits met?	Yes 🔽	No 🗆
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	Yes 🗖	No 🗹
7	Are project-specific matrix spikes and laboratory duplicates included in this data set?	Yes 🗖	No 🗹

Note: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or #1B is "No", the data package does not meet the requirements for "Reasonable Confidence".

I, the undersigned, attest under pains and penalties of perjury that, to the best of my knowledge and belief
and based upon my personal inquiry of those responsible for providing the information contained in this
analytical report, such information is accurate and complete.

Authorized

Signature:

Position: Lab Director

Printed Name: Reza Tand

Accutest New England

12/30/2015 Date:

Job No:

MC43503

Internal Sample Tracking Chronicle

CB&I

NRG Middletown, 1866 River Road, Middletown, CT Project No: 1009634028-00121110

Commit-						
Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
MC43503-1 TW-10	Collected: 10-DEC-15 (08:15 By: DL	Receiv	ed: 15-DEC-	15 By:	BA
MC43503-1	SW846 6010C	21-DEC-15 15:42	EC	18-DEC-15	EM	AS,PB,SE,V,ZN
MC43503-2 TW-14	Collected: 10-DEC-15 (09:05 By: DL	Receiv	ed: 15-DEC-	15 By:	BA
MC43503-2	SW846 6010C	21-DEC-15 16:13	EC	18-DEC-15	EM	AS,PB,SE,V,ZN
MC43503-3 EB-1	Collected: 10-DEC-15 (07:40 By: DL	Receiv	ed: 15-DEC-	15 By:	BA
MC43503-3	SW846 6010C MADEP EPH REV 1.1 SW846 8270D BY SIM		TA	18-DEC-15 16-DEC-15 16-DEC-15	PA	AS,PB,SE,V,ZN BMAEPHR B8270SIMPAH
MC43503-4 AOC1-MW2	Collected: 10-DEC-15 (09:45 By: DL	Receiv	ed: 15-DEC-	15 By:	BA
MC43503-4	SW846 6010C	21-DEC-15 16:23	EC	18-DEC-15	EM	AS,PB,SE,V,ZN
MC43503-5 AOC1-MW	Collected: 10-DEC-15	10:30 By: DL	Receiv	ed: 15-DEC-	15 By:	BA
MC43503-5	SW846 6010C	21-DEC-15 16:28	EC	18-DEC-15	EM	AS,PB,SE,V,ZN
MC43503-6 TW-18	Collected: 10-DEC-15	11:20 By: DL	Receiv	ed: 15-DEC-	15 By:	ВА
MC43503-6	SW846 6010C	21-DEC-15 16:33	EC	18-DEC-15	EM	AS,PB,SE,V,ZN
MC43503-7 TW-18 DUI	Collected: 10-DEC-15	11:20 By: DL	Receiv	ed: 15-DEC-	15 By:	BA
MC43503-7	SW846 6010C	21-DEC-15 16:38	EC	18-DEC-15	EM	AS,PB,SE,V,ZN
MC43503-8 TW-17D	Collected: 10-DEC-15	12:25 By: DL	Receiv	ed: 15-DEC-	15 By:	BA

Job No:

MC43503

Internal Sample Tracking Chronicle

CB&I

NRG Middletown, 1866 River Road, Middletown, CT Project No: 1009634028-00121110

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
MC43503-8	SW846 6010C	21-DEC-15 16:43	EC	18-DEC-15	EM	AS,PB,SE,V,ZN
MC43503-9 TW-21D	Collected: 10-DEC-15	13:20 By: DL	Receiv	ed: 15-DEC-	-15 By:	BA
MC43503-9	SW846 6010C	21-DEC-15 16:48	EC	18-DEC-15	EM	AS,PB,SE,V,ZN
MC43503-1 AOC5-MW	Collected: 10-DEC-15	14:05 By: DL	Receiv	ed: 15-DEC-	-15 By:	BA
	OMADEP EPH REV 1.1 OSW846 8270D BY SIM		TA MR	16-DEC-15 16-DEC-15		BMAEPHR B8270SIMPAH
MC43503-1 AOC2-SB1-	Collected: 10-DEC-15 MW1	15:00 By: DL	Receiv	red: 15-DEC-	-15 By:	BA
MC43503-1	ISW846 6010C	21-DEC-15 15:47	EC	18-DEC-15	EM	AS,PB,SE,V,ZN
MC43503-1 AOC9-SB1-	Collected: 11-DEC-15 (MW1	08:10 By: DL	Receiv	ed: 15-DEC-	-15 By:	BA
MC43503-1	ϪW846 6010C 2MADEP EPH REV 1.1 3SW846 8270D BY SIM		TA	18-DEC-15 16-DEC-15 16-DEC-15	PA	AS BMAEPHR B8270SIMPAH
MC43503-1 AOC8-SB1-	Collected: 11-DEC-15 (MW1	09:30 By: DL	Receiv	ed: 15-DEC-	-15 By:	BA
	3MADEP EPH REV 1.1 3SW846 8270D BY SIM		TA MR	16-DEC-15 16-DEC-15		BMAEPHR B8270SIMPAH
MC43503-1 AOC8-SB1-	4Collected: 11-DEC-15 (MW1 DUP	09:30 By: DL	Receiv	ed: 15-DEC-	-15 By:	BA
	4MADEP EPH REV 1.1 4SW846 8270D BY SIM			16-DEC-15 16-DEC-15		BMAEPHR B8270SIMPAH
MC43503-1 AOC9-SB2-	5Collected: 11-DEC-15 MW2	10:45 By: DL	Receiv	ed: 15-DEC-	-15 By:	BA

Internal Sample Tracking Chronicle

CB&I

MC43503 Job No:

NRG Middletown, 1866 River Road, Middletown, CT Project No: 1009634028-00121110

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
MC43503-	15SW846 6010C	21-DEC-15 15:58	EC	18-DEC-15	EM	AS,PB,SE,V,ZN
MC43503-	15MADEP EPH REV 1.1	1 22-DEC-15 18:40	TA	16-DEC-15	PA	BMAEPHR
MC43503-	15SW846 8270D BY SIM	I 24-DEC-15 15:08	MR	16-DEC-15	PA	B8270SIMPAH

Job Number: MC43503 Account: CB&I

Project: NRG Middletown, 1866 River Road, Middletown, CT

Collected: 12/10/15 thru 12/11/15

QC Sample ID CAS# Analyte Sample Result Result Units Limits
Type Type

No Exceptions found.

^{*} Sample used for QC is not from job MC43503

GC/MS Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Internal Standard Area Summaries
- Surrogate Recovery Summaries

Method: SW846 8270D BY SIM

Method Blank Summary

Job Number: MC43503 Account: FDG CB&I

Project: NRG Middletown, 1866 River Road, Middletown, CT

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP45788-MB	I99547.D	1	12/22/15	MR	12/16/15	OP45788	MSI3721

The QC reported here applies to the following samples:

MC43503-3, MC43503-10, MC43503-12, MC43503-13, MC43503-14, MC43503-15

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	0.20	0.015	ug/l	
208-96-8	Acenaphthylene	ND	0.20	0.017	ug/l	
120-12-7	Anthracene	ND	0.20	0.020	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.10	0.047	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.20	0.030	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.038	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.20	0.025	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.20	0.020	ug/l	
218-01-9	Chrysene	ND	0.20	0.026	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.20	0.030	ug/l	
206-44-0	Fluoranthene	ND	0.20	0.015	ug/l	
86-73-7	Fluorene	ND	0.20	0.030	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.20	0.041	ug/l	
91-57-6	2-Methylnaphthalene	ND	4.0	0.022	ug/l	
91-20-3	Naphthalene	0.18	4.0	0.016	ug/l	J
85-01-8	Phenanthrene	ND	0.10	0.022	ug/l	
129-00-0	Pyrene	ND	0.20	0.017	ug/l	

CAS No. **Surrogate Recoveries** Limits

4165-60-0	Nitrobenzene-d5	0% * a	26-121%
321-60-8	2-Fluorobiphenyl	76%	28-107%
1718-51-0	Terphenyl-d14	0% * a	29-129%

(a) Surrogate standard not added. EPH extract analyzed.

Method: SW846 8270D BY SIM

Blank Spike/Blank Spike Duplicate Summary

Job Number: MC43503 Account: FDG CB&I

Project: NRG Middletown, 1866 River Road, Middletown, CT

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP45788-BS	I99548.D	1	12/22/15	MR	12/16/15	OP45788	MSI3721
OP45788-BSD	I99549.D	1	12/22/15	MR	12/16/15	OP45788	MSI3721

The QC reported here applies to the following samples:

MC43503-3, MC43503-10, MC43503-12, MC43503-13, MC43503-14, MC43503-15

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
83-32-9	Acenaphthene	50	36.7	73	30.9	62	17	45-116/30
208-96-8	Acenaphthylene	50	37.5	75	31.3	63	18	34-110/30
120-12-7	Anthracene	50	41.9	84	40.8	82	3	50-117/30
56-55-3	Benzo(a)anthracene	50	44.1	88	43.8	88	1	55-139/30
50-32-8	Benzo(a)pyrene	50	45.1	90	44.2	88	2	48-131/30
205-99-2	Benzo(b)fluoranthene	50	45.1	90	45.2	90	0	49-141/30
191-24-2	Benzo(g,h,i)perylene	50	42.5	85	42.1	84	1	60-130/30
207-08-9	Benzo(k)fluoranthene	50	36.6	73	35.7	71	2	49-133/30
218-01-9	Chrysene	50	40.6	81	40.3	81	1	52-128/30
53-70-3	Dibenzo(a,h)anthracene	50	44.7	89	44.2	88	1	60-136/30
206-44-0	Fluoranthene	50	40.0	80	39.3	79	2	46-132/30
86-73-7	Fluorene	50	40.6	81	35.5	71	13	53-120/30
193-39-5	Indeno(1,2,3-cd)pyrene	50	45.7	91	45.2	90	1	57-134/30
91-57-6	2-Methylnaphthalene	50	34.5	69	27.9	56	21	36-111/30
91-20-3	Naphthalene	50	30.0	60	23.6	47	24	32-116/30
85-01-8	Phenanthrene	50	39.2	78	36.7	73	7	50-120/30
129-00-0	Pyrene	50	38.7	77	38.1	76	2	48-127/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
4165-60-0	Nitrobenzene-d5	0%* a	0% * a	26-121%
321-60-8	2-Fluorobiphenyl	67%	65%	28-107%
1718-51-0	Terphenyl-d14	0% * a	0% * a	29-129%

(a) Surrogate standard not added. EPH extract analyzed.

^{* =} Outside of Control Limits.

Semivolatile Internal Standard Area Summary

Job Number: MC43503 Account: FDG CB&I

Project: NRG Middletown, 1866 River Road, Middletown, CT

 Check Std:
 MSI3721-CC3694
 Injection Date:
 12/22/15

 Lab File ID:
 199540.D
 Injection Time:
 09:27

Instrument ID: GCMSI Method: SW846 8270D BY SIM

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT	IS 6 AREA	RT
Check Std	479529	4.32	1383670	5.37	766585	6.92	1255276	8.33	882634	11.10	1730406	12.61
Upper Limit ^a	959058	4.82	2767340	5.87	1533170	7.42	2510552	8.83	1765268	11.60	3460812	13.11
Lower Limit b	239765	3.82	691835	4.87	383293	6.42	627638	7.83	441317	10.60	865203	12.11
Lab	IS 1		IS 2		IS 3		IS 4		IS 5		IS 6	
Sample ID	AREA	RT	AREA	RT								
OP45845-MB	516609	4.32	1496221	5.37	813963	6.92	1320145	8.33	925616	11.10	1838457	12.61
OP45845-BS	512478	4.32	1475994	5.37	789765	6.92	1290627	8.33	883518	11.10	1717988	12.61
OP45845-MS	515895	4.32	1479514	5.37	796835	6.92	1284847	8.33	882276	11.10	1740310	12.61
OP45845-MSD	503472	4.32	1454881	5.37	787099	6.92	1291964	8.33	883888	11.10	1738001	12.61
MC43434-16	526474	4.32	1508909	5.37	824256	6.92	1316819	8.33	933735	11.10	1885792	12.61
ZZZZZZ	494138	4.32	1411246	5.37	760174	6.92	1210172	8.33	863523	11.09	1733216	12.61
OP45788-MB	519778	4.31	1502320	5.37	839971	6.92	1368471	8.33	1014333	11.10	1972132	12.61
OP45788-BS	577330	4.31	1670884	5.37	932644	6.92	1512448	8.33	1083138	11.10	2115858	12.61
OP45788-BSD	610636	4.31	1767521	5.37	990101	6.92	1605355	8.33	1152124	11.10	2247835	12.61
ZZZZZZ	551557	4.31	1630528	5.37	917462	6.92	1483204	8.33	1081972	11.10	2027926	12.61

IS 1 = 1,4-Dichlorobenzene-d4

IS 2 = Naphthalene-d8
IS 3 = Acenaphthene-D10
IS 4 = Phenanthrene-d10
IS 5 = Chrysene-d12
IS 6 = Perylene-d12

- (a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.
- (b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Semivolatile Internal Standard Area Summary

Job Number: MC43503 Account: FDG CB&I

Project: NRG Middletown, 1866 River Road, Middletown, CT

 Check Std:
 MSI3723-CC3694
 Injection Date:
 12/24/15

 Lab File ID:
 199569.D
 Injection Time:
 08:56

Instrument ID: GCMSI Method: SW846 8270D BY SIM

	IS 1 AREA	RT	IS 2 AREA RT	IS 3 AREA	RT	IS 4 AREA RT	IS 5 AREA RT	IS 6 AREA RT
Check Std Upper Limit ^a	464271 928542	4.32 4.82	1340877 5.37 2681754 5.87	730234 1460468	6.92 7.42	1180630 8.33 2361260 8.83	817248 11.0 1634496 11.5	
Lower Limit ^b	232136	3.82	670439 4.87	365117	6.42	590315 7.83	408624 10.5	9 817178 12.10
Lab Sample ID	IS 1 AREA	RT	IS 2 AREA RT	IS 3 AREA	RT	IS 4 AREA RT	IS 5 AREA RT	IS 6 AREA RT
OP45761-MB	544929	4.32	1560610 5.37	847821	6.92	1364030 8.33	968942 11.1	0 1908613 12.61
OP45761-BS	556412	4.32	1585007 5.37	847454	6.92	1381577 8.33	950444 11.1	0 1841607 12.61
OP45761-BSD	547519	4.32	1554926 5.37	826370	6.92	1354327 8.33	937742 11.1	0 1841354 12.61
ZZZZZZ	505244	4.32	1446668 5.37	769751	6.92	836759 8.33	794042 11.1	1 1709753 12.61
ZZZZZZ	538608	4.32	1546361 5.37	833115	6.92	1322496 8.33	922379 11.0	9 1851337 12.60
ZZZZZZ	550054	4.32	1576183 5.37	860164	6.92	1362660 8.33	948817 11.0	9 1905025 12.61
OP45874-MB	570708	4.32	1636619 5.37	892367	6.92	1416785 8.33	1008163 11.1	0 1969624 12.61
OP45874-BS	581132	4.32	1654697 5.37	888284	6.92	1444328 8.33	995572 11.1	0 1920519 12.61
ZZZZZZ	524414	4.32	1512569 5.37	824149	6.92	1315138 8.33	911033 11.0	9 1807581 12.60
MC43503-3	632224	4.31	1798383 5.37	985700	6.92	1571598 8.33	1114813 11.0	9 2123468 12.61
MC43503-10	609026	4.31	1761824 5.37	958048	6.92	1543848 8.33	1070335 11.0	9 2069811 12.60
MC43503-12	609452	4.31	1767807 5.37	961257	6.92	1541695 8.33	1064806 11.0	9 2066904 12.61
MC43503-13	654103	4.31	1878536 5.37	1040263	6.92	1613569 8.33	1122381 11.0	9 2199313 12.61
MC43503-14	662354	4.31	1906366 5.37	1057150	6.92	1648076 8.33	1142522 11.0	9 2229477 12.61
MC43503-15	621371	4.31	1802704 5.37	962475	6.92	1552146 8.33	1067123 11.0	9 2060053 12.60

IS 1 = 1,4-Dichlorobenzene-d4

IS 2 = Naphthalene-d8
IS 3 = Acenaphthene-D10
IS 4 = Phenanthrene-d10
IS 5 = Chrysene-d12
IS 6 = Perylene-d12

(a) Upper Limit = + 100% of check standard area; Retention time + 0.5 minutes.

(b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Semivolatile Surrogate Recovery Summary

Job Number: MC43503 Account: FDG CB&I

Project: NRG Middletown, 1866 River Road, Middletown, CT

Method: SW846 8270D BY SIM Matrix: AQ

Samples and QC shown here apply to the above method

Lab	Lab	C1	62	62	
Sample ID	File ID	S1	S2	S3	
MC43503-3	I99579.D	0* a	67	0* a	
MC43503-10	I99580.D	0* a	69	0* a	
MC43503-12	I99581.D	0* a	68	0* a	
MC43503-13	I99582.D	0* a	65	0* a	
MC43503-14	I99583.D	0* a	65	0* a	
MC43503-15	I99584.D	0* a	71	0* a	
OP45788-BS	I99548.D	0* a	67	0* a	
OP45788-BSD	I99549.D	0* a	65	0* a	
OP45788-MB	I99547.D	0* a	76	0* a	

Surrogate Recovery Compounds Limits

S1 = Nitrobenzene-d526-121% S2 = 2-Fluorobiphenyl 28-107% S3 = Terphenyl-d1429-129%

(a) Surrogate standard not added. EPH extract analyzed.

GC Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Surrogate Recovery Summaries

Method: MADEP EPH REV 1.1

Method Blank Summary Job Number: MC43503

Account: FDG CB&I

Project: NRG Middletown, 1866 River Road, Middletown, CT

Sample OP45787-MB	File ID DE12770.D	DF 1	Analyzed 12/22/15	By TA	Prep Date 12/16/15	Prep Batch OP45787	Analytical Batch GDE709

The QC reported here applies to the following samples:

MC43503-3, MC43503-10, MC43503-12, MC43503-13, MC43503-14, MC43503-15

CAS No.	Compound	Result	RL	MDL	Units Q
	C11-C22 Aromatics (Unadj.)	ND	100	70	ug/l
	C9-C18 Aliphatics	ND	100	70	ug/l
	C19-C36 Aliphatics	ND	100	70	ug/l
	C11-C22 Aromatics	ND	100	70	ug/l

CAS No.	Surrogate Recoveries	Limits	
84-15-1	o-Terphenyl	55%	40-140%
321-60-8	2-Fluorobiphenyl	111%	40-140%
3386-33-2	1-Chlorooctadecane	69%	40-140%
580-13-2	2-Bromonaphthalene	108%	40-140%

Page 1 of 1

Method: MADEP EPH REV 1.1

Blank Spike/Blank Spike Duplicate Summary Job Number: MC43503

FDG CB&I Account:

Project: NRG Middletown, 1866 River Road, Middletown, CT

Sample OP45787-BS OP45787-BSD	File ID DE12766.D DE12767.D	DF 1	Analyzed 12/22/15 12/22/15	By TA TA	Prep Date 12/16/15 12/16/15	Prep Batch OP45787 OP45787	Analytical Batch GDE709 GDE709

The QC reported here applies to the following samples:

MC43503-3, MC43503-10, MC43503-12, MC43503-13, MC43503-14, MC43503-15

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
	C11-C22 Aromatics (Unadj.)	800	708	89	698	87	1	40-140/25
	C9-C18 Aliphatics	300	206	69	195	65	5	40-140/25
	C19-C36 Aliphatics	400	381	95	448	112	16	40-140/25

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
84-15-1	o-Terphenyl	46%	52%	40-140%
321-60-8	2-Fluorobiphenyl	76%	77%	40-140%
3386-33-2	1-Chlorooctadecane	52%	71%	40-140%
580-13-2	2-Bromonaphthalene	77%	79%	40-140%

Sample	Compound	Col #1	Col #2	Breakthrough Limit	
OP45787-BS	2-Methylnaphthalene	29.2	0.18	0.6%	5.0
OP45787-BS	Naphthalene	30.0	0.52	1.7%	5.0
OP45787-BSD	2-Methylnaphthalene	24.7	0.19	0.8%	5.0
OP45787-BSD	Naphthalene	24.6	0.24	1.0%	5.0

^{* =} Outside of Control Limits.

Page 1 of 1

Semivolatile Surrogate Recovery Summary

Job Number: MC43503 Account: FDG CB&I

Project: NRG Middletown, 1866 River Road, Middletown, CT

Method: MADEP EPH REV 1.1 Matrix: AQ

Samples and QC shown here apply to the above method

Lab	Lab	C1 9	CO 2	ga h	04.9
Sample ID	File ID	S1 a	S2 a	S3 b	S4 a
MC43503-3	DE12779.D	46	73	67	73
MC43503-10	DE12782.D	52	80	61	81
MC43503-12	DE12783.D	48	75	65	76
MC43503-13	DE12784.D	60	79	69	82
MC43503-14	DE12785.D	55	76	74	79
MC43503-15	DE12786.D	55	72	60	74
OP45787-BS	DE12766.D	46	76	52	77
OP45787-BSD	DE12767.D	52	77	71	79
OP45787-MB	DE12770.D	55	111	69	108

Surrogate Recovery Compounds Limits

 S1 = o-Terphenyl
 40-140%

 S2 = 2-Fluorobiphenyl
 40-140%

 S3 = 1-Chlorooctadecane
 40-140%

 S4 = 2-Bromonaphthalene
 40-140%

(a) Recovery from GC signal #1(b) Recovery from GC signal #2

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC43503 Account: FDG - CB&I

Project: NRG Middletown, 1866 River Road, Middletown, CT

QC Batch ID: MP25623 Matrix Type: AQUEOUS

Prep Date:

Methods: SW846 6010C Units: ug/l

12/18/15

Metal	RL	IDL	MDL	MB raw	final
Aluminum	200	15	28		
Antimony	6.0	.76	2		
Arsenic	4.0	1.3	1.7	-0.60	<4.0
Barium	50	.24	1		
Beryllium	4.0	.18	.25		
Bismuth	50	.9	2.1		
Boron	100	. 43	1.1		
Cadmium	4.0	.14	.43		
Calcium	5000	5.3	15		
Chromium	10	.37	.48		
Cobalt	50	.14	.28		
Copper	25	. 48	2.4		
Gold	50	.95	1.5		
Iron	100	3.2	17		
Lead	5.0	.56	1.7	-0.10	<5.0
Lithium	500	2	2.5		
Magnesium	5000	22	54		
Manganese	15	.04	1.4		
Molybdenum	100	2	3.6		
Nickel	40	.19	.5		
Palladium	50	1.2	2.6		
Platinum	50	3.8	5.4		
Potassium	5000	40	49		
Selenium	10	1	2	-0.80	<10
Silicon	100	13	30		
Silver	5.0	.6	1		
Sodium	5000	10	77		
Sulfur	50	1.6	4.6		
Strontium	10	.15	.22		
Thallium	5.0	.47	1.7		
Tin	100	.26	.81		
Titanium	50	.38	.51		
Tungsten	100	3.1	22		

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC43503

Account: FDG - CB&I Project: NRG Middletown, 1866 River Road, Middletown, CT

QC Batch ID: MP25623 Methods: SW846 6010C Units: ug/l

Matrix Type: AQUEOUS

Prep Date:

Metal	RL	IDL	MDL	MB raw	final
Vanadium	10	. 36	.51	-0.30	<10
Zinc	20	.096	1	0.30	<20
Zirconium	50	.29	1.2		

12/18/15

Associated samples MP25623: MC43503-1, MC43503-2, MC43503-3, MC43503-4, MC43503-5, MC43503-6, MC43503-7, MC43503-8, MC43503-9, MC43503-11, MC43503-12, MC43503-15

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: MC43503 Account: FDG - CB&I

Project: NRG Middletown, 1866 River Road, Middletown, CT

QC Batch ID: MP25623 Matrix Type: AQUEOUS

Prep Date:

Methods: SW846 6010C

12/18/15

Type: AQUEOUS Units: ug/l

12/18/15

riep bace.			12/10/13					12/10/13	
Metal	BSP Result	Spikelot MPICP7	% Rec	QC Limits	BSD Result	Spikelot MPICP7	% Rec	BSD RPD	QC Limit
Aluminum									
Antimony									
Arsenic	520	500	104.0	80-120	525	500	105.0	1.0	20
Barium	anr								
Beryllium									
Bismuth									
Boron									
Cadmium									
Calcium									
Chromium									
Cobalt									
Copper									
Gold									
Iron									
Lead	1020	1000	102.0	80-120	1020	1000	102.0	0.0	20
Lithium									
Magnesium									
Manganese									
Molybdenum									
Nickel									
Palladium									
Platinum									
Potassium									
Selenium	514	500	102.8	80-120	517	500	103.4	0.6	20
Silicon									
Silver									
Sodium	anr								
Sulfur									
Strontium									
Thallium									
Tin									
Titanium									
Tungsten									
				_					

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: MC43503 Account: FDG - CB&I

Project: NRG Middletown, 1866 River Road, Middletown, CT

QC Batch ID: MP25623 Matrix Type: AQUEOUS Methods: SW846 6010C Units: ug/l

-75

Prep Date:

12/18/15

12/18/15

Metal	BSP Result	Spikelot MPICP7	% Rec	QC Limits	BSD Result	Spikelot MPICP7	% Rec	BSD RPD	QC Limit
Vanadium	503	500	100.6	80-120	500	500	100.0	0.6	20
Zinc	501	500	100.2	80-120	498	500	99.6	0.6	20
Zirconium									

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: MC43503 Account: FDG - CB&I

Project: NRG Middletown, 1866 River Road, Middletown, CT

QC Batch ID: MP25623 Methods: SW846 6010C Matrix Type: AQUEOUS Units: ug/l

Prep Date: 12/18/15

Metal	MC43534- Original	8 SDL 1:5	%DIF	QC Limits
Aluminum				
Antimony				
Arsenic	0.00	0.00	NC	0-10
Barium	anr			
Beryllium				
Bismuth				
Boron				
Cadmium				
Calcium				
Chromium				
Cobalt				
Copper				
Gold				
Iron				
Lead	0.600	0.00	100.0(a)	0-10
Lithium				
Magnesium				
Manganese				
Molybdenum				
Nickel				
Palladium				
Platinum				
Potassium				
Selenium	0.00	0.00	NC	0-10
Silicon				
Silver				
Sodium	anr			
Sulfur				
Strontium				
Thallium				
Tin				
Titanium				
Tungsten				

SERIAL DILUTION RESULTS SUMMARY

Login Number: MC43503 Account: FDG - CB&I

Project: NRG Middletown, 1866 River Road, Middletown, CT

QC Batch ID: MP25623 Methods: SW846 6010C Matrix Type: AQUEOUS Units: ug/l

Prep Date: 12/18/15

Metal	MC43534- Original	-8 L SDL 1:5	%DIF	QC Limits
Vanadium	0.00	0.00	NC	0-10
Zinc	156	159	1.8	0-10
Zirconium				

Associated samples MP25623: MC43503-1, MC43503-2, MC43503-3, MC43503-4, MC43503-5, MC43503-6, MC43503-7, MC43503-8, MC43503-9, MC43503-11, MC43503-12, MC43503-15

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits
(anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

62 of 62
ACCUTEST

MC43503

ACCUTEST

MC43503

NRG Middletown GW

Note: No SWPC for Total EPH

NRG Middletown GW

Note: No SWPC for Total EPH

Note: No SWPC for Total EPH.

All Results were non-detect and 1/2 the detection limit was used for graphing purposes.

Engineered Control Inspection Checklist Middletown Generating Station Middletown, CT

Completed by: Keith Shortsleeve	
Company: NRG	
Date: 11-10-2015	
Signature: Kirk J See	

Problem Code

PDSO = Perimeter Drainage Swale Obstructed **ACE 1 or 2** = Aggregate Cover Erosion, Moderate or Severe

ACSW 1 or 2 = Aggregate Cover Subsurface Washout, Moderate or Severe DCO = Drainage Culvert Obstructed

SCE 1 or 2 = Soil Cover Erosion, Moderate or Severe AP C1 = Asphalt Pavement Cracks > 1/2 inch

SCSW 1 or 2 = Soil Cover Subsurface Washout, Moderate or Severe **AP C2** = Asphalt "Potholes" **SF** = Slope Failure

GD 1 or 2 = Vegetation Dead, Moderate or Severe

 $\mathbf{O} = \text{Other}$

GE 1 or 2 = Vegetation Erosion, Moderate or Severe **GP** = Vegetation Water Ponding Observed

GSF = Vegetation Slope Failure

GSW = Vegetation Subsurface Washout

Remedial Areas (1)	Problem Code	Repair Requirements and Notes (Provide Description)		
AOC 1 (Ash Settling Basins)		Repuir Requirements and Protes (F107the Description)		
Low Permeability Engineered Control		Construction partially complete.		
Asphalt Engineered Control		Complete		
Aggregate Engineered Control		Construction completed.		
Soil Engineered Control		Construction completed in September 2015.		
AOC 8 (North & South Fuel Additive Ta	nks)			
Asphalt Engineered Control		Construction complete.		
AOC 13 (Misc. Residual Coal Ash Area I	Eastern half)			
Aggregate Engineered Control		Construction Complete.		
Soil Engineered Control		Construction Complete.		
Asphalt Engineered Control		Construction Complete.		

- (1) Use Sheets 1, 2, 3 and 4 of the Engineered Control Drawings for the Inspection Plan.
- (2) Document condition of each area identified and repaired during previous inspection.